Skip to main content
Log in

Acetogens: Biochemistry, Bioenergetics, Genetics, and Biotechnological Potential

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The review discusses the present-day data on the biochemistry, bioenergetics, and genetics of acetogens, as well as their biotechnological potential. Acetogens are anaerobic gram-positive bacteria capable of growth on gaseous substrates: CO2, CO, H2. These bacteria have a characteristic biochemical pathway of CO2 reduction to acetyl-CoA, termed the reductive acetyl-CoA pathway or the Wood‒Ljungdahl pathway. This is the only pathway of CO2 fixation coupled to energy storage. Due to their efficient non-photosynthetic CO2 fixation, acetogens may be used for production of chemicals and biofuel in the expected economy based on renewable energy and resources. The shortcomings of acetogens growing on gaseous substrates are low energy provision and a narrow spectrum of terminal metabolites, primarily acetic acid and ethanol with low amounts of butanol and butyric acid. Acetogens are capable of heterotrophic growth on such substrates as sugars, lactate, or alcohols. Mixotrophy, i.e., simultaneous utilization of different substrates by acetogens, is a promising approach to increasing the energy provision. Application of the methods of metabolic engineering is required both for successful coupling of different metabolic pathways and for broadening the range of synthesized products. Genetic tools for the transformation of genomes of acetogens have been considerably improved in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Annan, F.J., Al-Sinawi, B., Humphreys, C.H., Normann, R., Winzer, K., Köpke, M., Simpson, S.D., Mitton, N.P., and Henstra, A.M., Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum, Appl. Microbiol. Biotechnol., 2019, vol. 103, pp. 4633–4648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arslan, K., Bayer, B., Abubackar, H.V., Veiga, M., and Kennes, C., Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas, Bioresour. Technol., 2019, vol. 292, p. 12191.

    Article  CAS  Google Scholar 

  3. Aryal, N., Tremblay, P.L., Xu, M., Dangaard, A.E., and Zhang, T., Highly conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate polymer coated cathode for the microbial electrosynthesis of acetate from carbon dioxide, Front. Energy Res., 2018, vol. 6, p. 72.

    Article  Google Scholar 

  4. Bache, R. and Pfennig, N., Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields, Arch. Microbiol., 1981, vol. 130, pp. 255–261.

    Article  CAS  Google Scholar 

  5. Bahl, H.J., Dürre, P., Fischer, R.-J., Freitag, W., Grund, G., Lederle, S., May, A., Orschel, M., Schaffer, S., Schmidt., F. G., Schmidt, W., and Verseck, S., Patent DE102007052463A1, 2007.

  6. Basen, M. and Müller, V., Hot acetogenesis, Extremophiles, 2017, vol. 21, pp. 15–26.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee, A., Leang, C., Ueki, T., Nevin, K.P., and Lovley, D.R., Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii, Appl. Environ. Microbiol., 2014, vol. 80, pp. 2410–2417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bengelsdorf, F.R. and Dürre, P., Gas fermentation for commodity chemicals and fuels, Microbiol. Biotechnol., 2017, vol. 10, pp. 1167–1170.

    Article  Google Scholar 

  9. Bengelsdorf, F.R., Poehlein, A., Linder, S., Erz, C., Hummel, T., Hoffmeister, S., Daniel, R., and Dürre, P., Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis, Front. Microbiol., 2016, vol. 7, p. 1036.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bertsch, J. and Müller, V., Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria, Biotechnol. Biofuels, 2015a, vol. 81, art. 210.

    Article  CAS  Google Scholar 

  11. Bertsch, J. and Müller, V., CO metabolism in the acetogen Acetobacterium woodii, Appl. Environ. Microbiol., 2015b, vol. 81, pp. 5949–5956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braun, K. and Gottschalk, G., Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum, Arch. Microbiol., 1981, vol. 128, pp. 294–298.

    Article  CAS  PubMed  Google Scholar 

  13. Brown, S.D., Nagaraju, S., Utturkar, S., De Tissera, S., Segovia, S., Mitchell, W., Land, M.I., Dassanayake, A., and Köpke, M., Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia, Biotechnol. Biofuels, 2014, vol. 7, pp. 40–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Buckel, W. and Thauer R., Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with proton (Ech) or NAD+ (Rnf) as electron acceptors: a historical review, Front. Micribiol., 2018a, vol. 9, p. 401.

    Article  Google Scholar 

  15. Buckel, W. and Thauer R., Flavin-based electron bifurcation: a new mechanism of biological energy coupling, Chem. Rev., 2018b, vol. 118, pp. 3862–3886.

    Article  CAS  PubMed  Google Scholar 

  16. Burton, R., Can, M., Esckilsen, D., Wiley, S., and Ragsdahle, S.W., Production and properties of enzymes that activate and produce carbon monoxide, Methods Enzymol., 2018, vol. 613, pp. 297–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Claassens, N.J., Cotton, C.A.R., Kopljar, D., and Bar-Even, A., Making quantitative sense of electromicrobial production, Nat. Catal., 2019, vol. 2, pp. 437–447.

    Article  CAS  Google Scholar 

  18. Cotton, C.A.R., Claassens, N.J., Benito-Vaquerizo, S., and Bar-Even, A., Renewable methanol and formate as microbial feed stocks, Curr. Opin. Biotechnol., 2020, vol. 62, pp. 168–180.

    Article  CAS  PubMed  Google Scholar 

  19. Debabov, V.G., Bioethanol from synthesis gas, Biotechnologiya, 2012, vol. 28, no. 3, pp. 8–19. Demmer, J.K., Huang, H., Wang, S., Demmer, U., Thauer, R.K., and Ermler, U., Insights into flavin-based electron bifurcation via the NADH-dependent reduced ferredoxin:NADP oxidoreductase structure, J. Biol. Chem., 2015, vol. 290, pp. 21985–21995.

    Article  CAS  Google Scholar 

  20. De Tissera, S., Kӧpke, M., Simpson, S.D., Humphreys, C., Minton, N.P., and Dürre, P., Syngas biorefinery and syngas utilization, in Biorefineries, Wagemann, K. and Tippkötter, N., Eds., Adv. Biochem. Biotechnol., Cham: Springer, 2019, vol. 166, pp. 247–280.

  21. Diender, M., Stams, A.J., and Souza, D.Z., Production of medium-chain acids and higher alcohols by a synthetic coculture grown on carbon monoxide or syngas, Biotechnol. Biofuels, 2016, vol. 9, art. 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Drake, H.L., Gossner, A.S., and Daniel, S.L., Old acetogenes, new light, Ann. N.Y. Acad. Sci., 2008, vol. 1125, pp. 100–128.

    Article  CAS  PubMed  Google Scholar 

  23. Drake, H.L., Küsel, K., and Matthies, M., Acetogenic prokaryotes, in The Prokaryotes, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F., Eds., Berlin, Heidelberg: Springer, 2013.

    Google Scholar 

  24. Dürre, P., Butanol formation from gaseous substrates, FEMS Microbiol. Lett., 2016, vol. 363, fnw040.

    Article  PubMed  CAS  Google Scholar 

  25. Dürre, P. and Eikmanns, B., C1-carbon sources for chemical and fuel production by microbial gas fermentation, Curr. Opin. Biotechnol., 2015, vol. 35, pp. 63–72.

    Article  PubMed  CAS  Google Scholar 

  26. Fast, A.G. and Papoutsakis, E.T., Stoichiometric and energetic analysis of non-photosynthetic CO2 fixation pathways to support synthetic biology strategies for production of fuel and chemicals, Curr. Opin. Chem. Engin., 2012, vol. 1, pp. 380–395.

    Article  Google Scholar 

  27. Fast, A.G., Schmidt, E.D., Jones, W., and Tracy, B.P., Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production, Curr. Opin. Biotechnol., 2015, vol. 33, pp. 60–72.

    Article  CAS  PubMed  Google Scholar 

  28. Flüchter, S., Follonier, S. Schiel-Bengelsdorf, B., Bengelsdorf, F.R., Zinn, M., and Dürre, P., Anaerobic production of poly(3-hydroxybutyrate) and its precursor 3-hydroxybutyrate from synthesis gas by autotrophic Clostridia, Biomacromolecules, 2019, vol. 20, pp. 3271–3282.

    Article  PubMed  CAS  Google Scholar 

  29. Gaddy, J.L., Arora, D.K., Ko, C.-W., Phillips, J.R., Basu, R., Wikstrom, C.V., and Clausen, E.C., Patent US7285402, 2007.

  30. Gildemyn, S., Molitor, B., Usack, G., Nguyen, M., Rabaey, K., and Angenent, L.T., Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation, Biotechnol. Biofuels, 2017, vol. 10, art. 83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Groher, A. and Weuster-Botz, D., Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation, J. Biotechnol., 2016, vol. 288, pp. 82–94.

    Article  CAS  Google Scholar 

  32. Haas, T., Krause, R., Weber, R., Demler, M., and Schmid, G., Technical photosynthesis involving CO2 electrolysis and fermentation, Nat. Catal., 2018, vol. 1, pp. 32–39.

    Article  CAS  Google Scholar 

  33. He, Y., Li, M., Perumal, V., Feng, X., Fang, J., Xie, J., Sievert, S.M., and Wang, F., Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments, Nat. Microbiol., 2016, vol. 1, art. 16035.

    Article  CAS  PubMed  Google Scholar 

  34. Heap, J.T., Kuehne, S.A., Ehsaan, M., Cartman, S.T., Cooksley, C.M., Scott, J.C., and Minton, N.P., The Clo-sTron: mutagenesis in Clostridium refined and streamlined, J. Microbiol. Meth., 2010, vol. 80, pp. 49–55.

    Article  CAS  Google Scholar 

  35. Herrmann, G., Jayamani, E., Mai, G., and Buckel, W., Energy conservation via electron-transferring flavoprotein in anaerobic bacteria, J. Bacteriol., 2008, vol. 190, pp. 784–791.

    Article  CAS  PubMed  Google Scholar 

  36. Hess, V., Schuchmann, K., and Müller, V., The ferredoxin:NAD+ oxidoreductase from acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential, J. Biol. Chem., 2012, vol. 288, pp. 31496–31502.

    Article  CAS  Google Scholar 

  37. Hoffmeister, S., Gerdom, M., Bengelsdorf, F.R., Linder, S., Flüchter, S., Oztürk, H., Blümke, W., May, A., Fischer, Y., Bahl, H., and Dürre, P., Acetone production with metabolically engineered strain Acetobacterium woodii, Metabolic. Engin., 2016, vol. 36, pp. 37–47. https://belgium/arcelorm:ttal.com/en/ ArcelorMittal and LanzaTech break ground on €150million project to revolutionise blast furnace carbon emissions capture. http://biomassmagazine.com/articles/13662/ineos-bioto-sell-ethanol-business-including-vero-beach-plant. https://www.chemicals-technology.com/projects/LanzaTech 2,3-Butanediol Demonstration Plant. https://www.lanzatech.com. https://press.siemens.com/global/en/pressrelease/research- project-rheticus. https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/.

    Google Scholar 

  38. Huang, H., Chai, C., Li, N., Rove, P., Minton, N.P., Yang, S., Jiang, W., and Gu, Y., CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium, ACS Synt. Biol., 2016, vol. 5, pp. 1355–1361.

    Article  CAS  Google Scholar 

  39. Humphreys, C.M., McLean, S., Schatschneider, S., Millat, T., Henstra, A.M., Annan, F.J., Breitkopf, R., Pander, B., Piatek, P., Rowe, P., Wichlacz, A.T., Woods, C., Norman, R., Blom, J., Goesman, A., et al., Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium, BMC Genomics, 2015, vol. 16, art. 1085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jiang, Y., Zhang, T., Lu, J., Dürre, P., Zhang, W., Dong, W., Zhou, J., Jiang, M., and Xin, F., Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing, Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 5419–5425.

    Article  CAS  PubMed  Google Scholar 

  41. Joseph, R.C., Kim, N.M., and Sandoval, N.R., Recent developments of the synthetic biology toolkit for Clostridium, Front. Microbiol., 2018, vol. 9, p. 154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karim, A.S., Dudley, Q.M., Juminaga, A., Yuan, Y., Crowe, S.A., Heggestad, J.T., Garg, S., Abdalla, T., Grubbe, W.S., Rasor, B.J., Coar, D.N., Torculas, M., Krein, M., Liew, F.M., Quattlebaum, A., et al., In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design, Nat. Chem. Biol., 2020, vol. 16, pp. 912–919. https://doi.org/10.1038/s41589-020-0959-0

    Article  CAS  PubMed  Google Scholar 

  43. Kӧpke, M., Held, C., Hujer, S., Liesegang, H., Weizer, A., Wollherr, A., Ehrenreich, A., Liebel, W., Gottschalk, G., and Dürre, P., Clostridium ljungdahlii represents a microbial production platform based on syngas, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 13087–13092.

    Article  Google Scholar 

  44. Kӧpke, M., Mihalcea, C., Bromley, J.C., and Simpson, S.D., Fermentative production of ethanol from carbon monoxide, Curr. Opin. Biotechnol., 2011a, vol. 22, pp. 320–325.

    Article  CAS  Google Scholar 

  45. Kӧpke, M., Mihalcea, C., Liew, F.M., Tizard, J.H., Ali, M.S., Conolly, J.J., Al-Sinawi, B., and Simpson, S.D., 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas, Appl. Environ. Microbiol., 2011b, vol. 77, pp. 5467–5475.

    Article  CAS  Google Scholar 

  46. Kӧpke, M. and Liew, F., Patent WO2012/053905, 2012.

  47. Kӧpke, M., Simpson, S., Liew, F., and Chen, W., Patent US20120252083A1, 2012.

  48. Kӧpke, M., Gerth, M.L., Maddok, D.J., Mueller, A.P., Liew, F.M., Simpson, S.D., and Patrick, W.M., Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase, Appl. Environ. Microbiol., 2014, vol. 80, pp. 3394–3403.

    Article  CAS  Google Scholar 

  49. Kottenhahn, P., Schuchmann, K., and Müller, V., Efficient whole-cell biocatalyst for formate based hydrogen production, Biotechnol. Biofuels, 2018, vol. 11, art. 93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kremp, F., Poehlein, A., Daniel, R., and Müller, V., Methanol metabolism in the acetogenic bacterium Acetobacterium woodii, Environ. Microbiol., 2018, vol. 20, pp. 4369–4384.

    Article  CAS  PubMed  Google Scholar 

  51. Latif, H., Zeidan, A.A., Nielsen, A.T., and Zengler, K., Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms, Curr. Opin. Biotechnol., 2014, vol. 27, pp. 79–87.

    Article  CAS  PubMed  Google Scholar 

  52. Leang, C., Ueki, T., Nevin, K.P., and Lovley, D.R., A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen, Appl. Environ. Microbiol., 2013, vol. 79, pp. 1102–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lechtenfeld, M., Heine, J., Sameith, J., Kremp, F., and Müller, V., Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii, Environ. Microbiol., 2018, vol. 20, pp. 4512–4525.

    Article  CAS  PubMed  Google Scholar 

  54. Lehtinen, T., Efimova, E., Tremblay, P.L., Santala, S., Zhang, T., and Santala, V., Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process, Bioresour. Technol., 2017, vol. 43, pp. 30–36.

    Article  CAS  Google Scholar 

  55. Lehtinen, T., Virtanen, M., Santala, S., and Santala, V., Production of alkanes from CO2 by engineered bacteria, Biotechnol. Biofuels, 2018, vol. 11, art. 228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lemaire, O.N., Jespersen, M., and Wagner, T., CO2-fixation strategies in energy extremophiles: what can we learn from acetogens?, Front. Microbiol., 2020, vol. 11, p. 486.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lemgruber, R.S.P., Valgepea, K., Tappel, R., Behren-dorff, J.B., Palfreyman, R.W., Plan, M., Hodson, M.P., Simpson, S.D., Nielsen, L.K., Kӧpke, M., and Marcellin, E., Systems-level engineering and characterization of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutirate (PHB), Metabol. Eng., 2019, vol. 53, pp. 14–23.

    Article  CAS  Google Scholar 

  58. Liang, J., Huang, H., and Wang, S., Distribution, evolution, catalytic mechanism and physiological functions of the flavin-based electron bifurcating NADH-dependent reduced ferredoxin:NADP+ oxidoreductase, Front. Microbiol., 2019, vol. 10, p. 373.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liew, F.-M., Martin, M.E., Tappel, R.C., Heijstra, V.D., Mihalcea, C., and Köpke, M., Gas fermentation—a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feed stocks, Front. Microbiol., 2016, vol. 7, p. 694.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liew, F., Henstra, A.M., Köpke, M., Winzer, K., Simpson, S.D., and Minton, N.P., Metabolic engineering of Clostridium autoethanogenum for selective alcohol production, Metab. Engin., 2017, vol. 40, pp. 104–114.

    Article  CAS  Google Scholar 

  61. Lubner, C.E., Jennings, D.P., Mulder, D.W., Schut, G.J., Zadvornyy, O.A., Hoben, J.P., Tokmina-Lukaszewska, M., Berry, L., Nguyen, D.M., Lipscomb, G.L., Bothner, B., Jones, A.K., Miller, A.-F., King, P.W., Adams, M.W.W., and Peters, J.W., Mechanistic insights into energy conservation by flavin-based electron bifurcation, Nat. Chem. B-iol., 2017, vol. 13, pp. 655–659.

    Article  CAS  Google Scholar 

  62. Martin, A.J., Larrazable, G.O., and Peretz-Ramirez, Y., Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lesson from water electrolysis, Green Chem., 2015, vol. 17, pp. 5114–5130.

    Article  CAS  Google Scholar 

  63. Maru, B.T., Munasinghe, P.C., Gilary, H., Jones, S.W., and Tracy, B.P., Fixation of CO2 and CO on a diverse range of carbohydrates using anaerobic, non-photosynthetic mixotrophy, FEMS Microbiol. Lett., 2018, vol. 365, fny039.

    Article  CAS  Google Scholar 

  64. May, H.D., Evans, P.J., and LaBelle, E.V., The bioelectrosynthesis of acetate, Curr. Opin. Biotechnol., 2016, vol. 42, pp. 225–233.

    Article  CAS  PubMed  Google Scholar 

  65. Mayer, A. and Weuster-Botz, D., Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum, FEMS Microbiol. Lett., 2017, vol. 364, fnx219. https://doi.org/10.1093/femsle/fnx219

    Article  CAS  Google Scholar 

  66. McAllister, K.N. and Sorg, J.A., CRISPR genome editing systems in the genus Clostridium: a timely advancement, J. Bacteriol., 2019, vol. 201, no. 16, e00219-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitchell, P., The protonmotive Q cycle: a general formulation, FEBS Lett. 1975, vol. 59, pp. 137–139.

    Article  CAS  PubMed  Google Scholar 

  68. Mitchell, P., Possible molecular mechanisms of the proton motive function of cytochrome systems, J. Theor. Biol. 1976, vol. 62, pp. 327–367.

    Article  CAS  PubMed  Google Scholar 

  69. Mock, J., Zheng, Y., Mueller, A.P., Ly, S., Tran, L., Segovia, S., Nagaraju, S., Kӧpke, M., Dürre, P., and Thauer, R.K., Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation, J. Bacteriol., 2015, vol. 197, pp. 2965–2980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mohr, T., Infantes, A., Biebinger, L., Maayer, P., and Neumann, A., Acetogenic fermentation from oxygen containing waste gas, Front. Bioengin. Biotechnol., 2019, vol. 7, p. 433.

    Article  Google Scholar 

  71. Molitor, B., Richter, H., Martin, M.E., Jensen, R.Q., Juminaga, A., Mihalcea, C., and Angenent, L.T., Carbon recovery by fermentation of CO-rich off gases-turning steel mills into biorefineries, Bioresour. Technol., 2016, vol. 15, pp. 386–398.

    Article  CAS  Google Scholar 

  72. Molitor, B., Marcellin, E., and Angenent, L., Overcoming the energetic limitations of syngas fermentation, Curr. Opinion. Chem. Biol., 2017, vol. 84, pp. 84–92.

    Article  CAS  Google Scholar 

  73. Molitor, B., Mishra, A., and Angenent, L.T., Power-to-protein: converting renewable electric power and carbon dioxide into cell protein with two-stage bioprocess, Energy Environ. Sci., 2019, vol. 12, pp. 3515–3521.

    Article  CAS  Google Scholar 

  74. Müller, V., New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage, Trends Biotechnol., 2019, vol. 37, pp. 1344–1354.

    Article  PubMed  CAS  Google Scholar 

  75. Nagaraju, S., Davies, N.K., Walker, D.J.F., Kӧpke, M., and Simpson, S.D., Genome editing of Clostridium autoethanogenum using CRISPR/Cas9, Biotechnol. Biofuels, 2016, vol. 9, art. 219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Najafpour, G.D. and Younesi, H., Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii, Enzyme Microbiol. Technol., 2006, vol. 38, pp. 223–228.

    Article  CAS  Google Scholar 

  77. Nevin, K.P., Woodart, T.L., Franks, A.E., Summers, Z.M., and Lovley, D.R., Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, mBio, 2010, vol. 1, e00103-e00110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Norman, R.O.J., Millat, T., Winzer, K., Minton, N.P., and Hogman, C., Progress towards platform chemical production using Clostridium autoethanogenum, Biochem. Soc. Trans., 2018, vol. 46, pp. 523–535.

    Article  CAS  PubMed  Google Scholar 

  79. Patent WO2014/1132209A1, 2014.

  80. Patent US890384132, 2018.

  81. Peters, J.W., Beratan, D.N., Bothner, B., Dyer, R.B., Harwood, S., Heiden, Z.M., Hille, R., Jones, A.K., King, P.W., Lu, Y., Lubner, C.E., Minteer, S.D., Mulder, D.W., Raugei, S., Schut, G.J. et al., A new era for electron bifurcation, Curr. Opin. Chem. Biol., 2018, vol. 47, pp. 32–38.

    Article  CAS  PubMed  Google Scholar 

  82. Phillips, J.R., Atiyeh, H.K., Tanner, R.S., Torres, J.R., Saxena, J., Wilkins, M.R., and Huhnke, R.L., Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques, Bioresour. Technol., 2015, vol. 190, pp. 114–121.

    Article  CAS  PubMed  Google Scholar 

  83. Phillips, G., de Vries, S., and Jennewein, S., Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii, Biotechnol. Biofuel., 2019, vol. 12, art. 112.

  84. Poudel, S., Dunham, E.C., Lindsay, M.R., Amena-bar, M.J., Fones, E.M., Colman, D.R., and Boyd, E.S., Origin and evolution of flavin-based electron bifurcating enzymes, Front. Microbiol., 2018, vol. 9, p. 1762.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Prévoteau, A., Carvajal-Arroyo, J.M., Ganigué, R., and Rabaey, K., Microbial electrosynthesis from CO2: forever a promise?, Curr. Opin. Biotechnol., 2020, vol. 62, pp. 48–57.

    Article  PubMed  CAS  Google Scholar 

  86. Ragsdale, S.W. and Pierce, E., Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation, Biochim. Biophys. Acta, 2008, vol. 1784, pp. 1873–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ragsdale, S.W., Enzymology of the Wood–Ljungdahl pathway of acetogens, Ann. N.Y. Acad. Sci., 2008, vol. 1125, pp. 129–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rajagopalan, S., Datar, R.P., and Lewis, R.S., Formation of ethanol from carbon monoxide via a new microbial catalyst, Bioenergy, 2002, vol. 23, pp. 487–493.

    CAS  Google Scholar 

  89. Ramió-Pujol, S., Ganigué, R., Bañeras, L., and Colprim, J., Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas, Int. Microbiol., 2014, vol. 17, pp. 195–204.

    PubMed  Google Scholar 

  90. Ramió-Pujol, S., Ganigué, R., Bañeras, L., and Colprim, J., Incubation at 25°C prevents acid crush and enhances alcohol production in Clostridium carboxidivorans P7, Bioresours. Technol., 2015, vol. 192, pp. 296–303.

    Article  CAS  Google Scholar 

  91. Ramió-Pujol, S., Ganigué, R., Bañeras, L., and Colprim, J., Effect of ethanol and butanol on autotrophic growth of model homoacetogens, FEMS Microbiol. Lett., 2018, vol. 365, fny084.

    Article  CAS  Google Scholar 

  92. Richter, H., Molitor, B., Diender, M., Sousa, D.Z., and Angenent, L.T., A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction, Front. Microbiol., 2016a, vol. 7, p. 1773.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Richter, H., Molitor, B., Wei, H., Chen, W., Aristilde, L., and Angenent, L.A., Ethanol production in syngas-fermenting Clostridium ljungdahlii controlled by thermodynamics rather than by enzyme expression, Energy Environ. Sci., 2016b, vol. 9, pp. 2392–2399.

    Article  CAS  Google Scholar 

  94. Riegler, P., Bieringer, E., Chrusciel, T., Stärz, M., Löwe, H., and Weuster-Botz, D., Continuous conversion of CO2/H2 with Clostridium aceticum in biofilm reactors, Bioresour. Technol., 2019, vol. 291, p. 121760.

    Article  CAS  PubMed  Google Scholar 

  95. Rojas, M., Zaiat, M., Gonzalez, E.R., Wiver, H., and Pant, D., Effect of the electric supply interruption on a microbial electrosynthesis system converting in organic carbon into acetate, Bioresour. Technol., 2018, vol. 206, pp. 203–210.

    Article  CAS  Google Scholar 

  96. Schiel-Bengelsdorf, B. and Dürre, P., Pathway engineering and synthetic biology using acetogens, FEBS Lett., 2012, vol. 586, pp. 2190–2198.

    Article  CAS  Google Scholar 

  97. Schoelmerich, M.C. and Müller, V., Energy-converting hydrogenases: the link between H2 metabolism and energy conservation, Cell Mol. Life Sci., 2019a, vol. 77, pp. 1461–1481.

    Article  PubMed  CAS  Google Scholar 

  98. Schoelmerich, M.C. and Müller, V., Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway, Proc. Natl. Acad. Sci. USA, 2019b, vol. 116, pp. 6329–6334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schoelmerich, M.C., Katsyv, A., Dönig, J., Hackmann, T.J., and Müller, V., Energy conservation involving 2 respiratory circuits, Proc. Natl. Acad. Sci. USA, 2020, vol. 117, pp. 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  100. Schuchmann, K. and Müller, V., Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase, Science, 2013, vol. 342, pp. 1380–1385.

    Article  CAS  Google Scholar 

  101. Schuchmann, K. and Müller, V., Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nat. Rev. Microbiol., 2014, vol. 12, pp. 809–821.

    Article  CAS  PubMed  Google Scholar 

  102. Schwarz, M.F., Schuchmann, K., and Müller, V., Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalysis, Biotechnol. Biofuels, 2018, vol. 11, art. 237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Schwarz, F.M. and Müller, V., Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen, Biotechnol. Biofuels, 2020, vol. 13, art. 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shin, J., Song, Y., Jeong, Y., and Cho, B.-K., Analysis of the core genome and pangenome of autotrophic acetogenic bacteria, Front. Microbiol., 2016, vol. 7, p. 1531.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shin, H.J., Jung, K.A., Nam, C.W., and Park, J.M., A genetic approach for microbial electrosynthesis system as biocommodities production platform, Bioresour. Technol., 2017, vol. 245, pp. 1421–1429.

    Article  CAS  PubMed  Google Scholar 

  106. Shut, G.J. and Adams, M.V., The iron-hydrogenase of Termotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective an anaerobic hydrogen production, J. Bacteriol., 2009, vol. 191, pp. 4451–4457.

    Article  CAS  Google Scholar 

  107. Simpson, S.D., Kӧpke, M., Smart, K.F., Tran, L.P., and Sechrist, P., Patent US20140273115A1, 2014.

  108. Spirito, C.M., Richter, H., Rabaey, K., Stams, A.J.M., and Angenent, L.T., Chain elongation in anaerobic reactor microbiomes to recover resources from waste, Curr. Opin. Biotechnol., 2014, vol. 27, pp. 115–122.

    Article  CAS  PubMed  Google Scholar 

  109. Stoll, R., Boukis, N., and Sauer, J., Syngas fermentation to alcohols: reactor technology and application, Chen. Ind. Tech., 2020, vol. 92, pp. 125–136.

    Article  CAS  Google Scholar 

  110. Strätz, M., Sauer, U., Kuhn, A., and Dürre, P., Plasmid transfer into the homoacetogen Acetobacterium woodii by electroporation and conjugation, Appl. Environ. Microbiol., 1994, vol. 60, pp. 1033–1037.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Straub, M., Demler, M., Weuster-Botz, D., and Dürre, P., Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii, J. Biotechnol., 2014, vol. 178, pp. 67–72.

    Article  CAS  PubMed  Google Scholar 

  112. Takors, R., Kopf, M., Mampel, J., Bluemke, W., Blombach, B., Eikmanns, B., Bengelsdorf, F.R., Weuster-Botz, D., and Dürre, P., Using gas mixture of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale, Microb. Biotechnol., 2018, vol. 11, pp. 606–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tremblay, P.L., Zhang, T., Dar, S.A., Leang, C., and Lovley, D.K., The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD oxidoreductase essential for autotrophic growth, mBio, 2012, e00406-12.

  114. Tremblay, P.L., Hӧglund, D., Koza, A., Bonde, I., and Zhang, T., Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products, Sci. Rep., 2015, vol. 5, art. 16168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ueki, T., Nevin, K.P., Woodart, T.L., and Lovley, D.R., Converting carbon dioxide to butyrate with engineered strain of Clostridium ljungdahlii, mBio, 2014, e01636-14.

  116. Valgepea, K., Loi, K.Q., Behrendorff, J.B., Lemgruber, R.S.P., Plan, M., Hodson, M.P., Kӧpke, M., Nielsen, L.K., and Marcellin, E., Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum, Metab. Engin., 2017, vol. 41, pp. 202–211.

    Article  CAS  Google Scholar 

  117. Van Hecke, W., Bockrath, R., and De Wever, D., Effects of moderately elevated pressure on gas fermentation process, Bioresour. Technol., 2019, vol. 293, p. 122129.

    Article  CAS  PubMed  Google Scholar 

  118. Voegele, E., Ineos Bio to sell ethanol business, including Vero Beach plant, Biomass Magazine, 2016. http://biomassmagazine.com/articles/13662.

  119. Wang, S., Huang, H., Kahnt, J., Mueller, A.P., Kӧpke, M., and Thauer, R.K., NADP-specific electron-bifurcating [Fe-Fe]-hydrogenase in functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO, J. Bacteriol., 2013, vol. 195, pp. 4373–4386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Westphal, L., Wiechmann, A., Baker, J., Minton, N.P., and Müller, V., The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii, J. Bacheriol., 2018, vol. 200, e00357-18.

    CAS  Google Scholar 

  121. Zhao, R., Lin, Y., Zhang, M., Chai, C., Wang, J., Yiang, W., and Gu, Y., CRISPR/Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation, ACS Synth. Biol., 2019, vol. 8, pp. 2270–2279.

    Article  CAS  PubMed  Google Scholar 

  122. Zhu, H.-F., Lin, Z.Y., Zhou, L., Yi, J.-H., Lun, Z.-M., Wang, S.-N., Tang, W.-Z., and Li, F.-L., Energy conservation and carbon flux distribution during fermentation of CO and H2/CO2 by Clostridium ljungdahlii, Front. Microbiol., 2020, vol. 11, p. 416.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Debabov.

Ethics declarations

Conflict of interests. The author declares that there exists no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debabov, V.G. Acetogens: Biochemistry, Bioenergetics, Genetics, and Biotechnological Potential. Microbiology 90, 273–297 (2021). https://doi.org/10.1134/S0026261721030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721030024

Keywords:

Navigation