Skip to main content
Log in

Stimulatory Effect of Epinephrine on Biofilms of Micrococcus luteus C01

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This is the first report on biofilm formation by Micrococcus luteus C01 in model systems stimulated by epinephrine. In the presence of 900 pg/mL of epinephrine in the medium, a 52.3% increase in the metabolic activity of biofilm bacteria compared to the control (without epinephrine). However, after 72 h of growth, the total amount of biofilm biomass in the presence of epinephrine increased by 89.5%, while bacterial metabolic activity in the biofilm remained at the control level. It may be assumed that the targets of the stimulating effect of epinephrine are some pathways of bacterial metabolism, which determine both their growth (at the initial stages of biofilm development) and synthesis of the biofilm matrix, which is more pronounced in mature biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ako-Nai, K.A. and Omo-Omorodion, B., Bacterial colonization of the vagina, oropharynx, breast milk and anterior nares of neonates among HIV seropositive pregnant women and seronegative pregnant counterparts, J. Microbiol. Exp., 2019, vol. 7, pp. 116–124.

    Article  Google Scholar 

  2. Boutcher, S.H., Maw, G.J., and Taylor, N.A., Forehead skin temperature and thermal sensation during exercise in cool and thermoneutral environments, Aviat. Space Environ. Med., 1995, vol. 66, pp. 1058–1066.

    CAS  PubMed  Google Scholar 

  3. Boyanova, L., Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria, Anaerobe, 2017, vol. 44, pp. 13–19.

    Article  CAS  Google Scholar 

  4. Chen, C., Song, X., Wei, W., Zhong, H., Dai, J., Lan, Z., Li, F., Yu, X., Feng, Q., Wang, Z., Xie, H., Chen, X., Zeng, C., Wen, B., Zeng, L., et al., The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases, Nat. Commun., 2017, vol. 8, p. 875.

    Article  Google Scholar 

  5. Chen, Y.E., Fischbach, M.A., and Belkaid, Y., Skin microbiota–host interactions, Nature, 2018, vol. 553, pp. 427–436.

    Article  CAS  Google Scholar 

  6. Daeschlein, G., Scholz, S., Ahmed, R., von Woedtke, T., Haase, H., Niggemeier, M., Kindel, E., Brandenburg, R., Weltmann, K.D., and Juenger, M., Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma, J. Hosp. Infect., 2012, vol. 81, pp. 177–183.

    Article  CAS  Google Scholar 

  7. Frank, K.L. and Patel, R., Intravenously administered pharmaceuticals impact biofilm formation and detachment of Staphylococcus lugdunensis and other staphylococci, Diagn. Microbiol. Infect. Dis., 2008, vol. 60, pp. 9–16.

    Article  CAS  Google Scholar 

  8. Gannesen, A.V., Lesouhaitier, O., Netrusov, A.I., Plakunov, V.K., and Feuilloley, M.G.J., Regulation of formation of monospecies and binary biofilms by human skin microbiota components, Staphylococcus epidermidis and Staphylococcus aureus, by human natriuretic peptides, Microbiology (Moscow), 2018a, vol. 87, pp. 597–609.

    Article  CAS  Google Scholar 

  9. Gannesen, A.V., Lesouhaitier, O., Racine, P.J., Barreau, M., Netrusov, A.I., Plakunov, V.K., and Feuilloley, M.G., Regulation of monospecies and mixed biofilms formation of skin Staphylococcus aureus and Cutibacterium acnes by human natriuretic peptides, Front. Microbiol., 2018b, vol. 9, p. 2912. https://doi.org/10.3389/fmicb.2018.02912

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gannesen, A.V., Zhurina, M.V., Veselova, M.A., and Plakunov, V.K., Regulation of biofilm formation by Pseudomonas chlororaphis in an in vitro system, Microbiology (Moscow), 2015, vol. 84, pp. 319–327.

    Article  CAS  Google Scholar 

  11. Hanafy, R.A., Couger, M.B., Baker, K., Murphy, C., O’Kane, S.D., Budd, C., French, D.P., and Youssef, N., Draft genome sequence of Micrococcus luteus strain O’Kane implicates metabolic versatility and the potential to degrade polyhydroxybutyrates, Genom. Data, 2016, vol. 9, pp. 148–153.

    Article  Google Scholar 

  12. Jahns, A.C., Lundskog, B., Ganceviciene, R., Palmer, R.H., Golovleva, I., Zouboulis, C.C., McDowell, A., Patrick, S., and Alexeyev, O.A., An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study, Br. J. Dermatol., 2012, vol. 167, pp. 50–58.

    Article  CAS  Google Scholar 

  13. Khorvash, F., Abdi, F., Kashani, H.H, Naeini, F.F., and Narimani, T., Staphylococcus aureus in acne pathogenesis: a case-control study, N. Am. J. Med. Sci., 2012, vol. 4, pp. 573–576.

    Article  Google Scholar 

  14. Kloos, W.E., Tornabene, T.G., and Schleifer, K.H., Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae,Int. J. Syst. Evol. Microbiol., 1974, vol. 24, pp. 79–101.

    CAS  Google Scholar 

  15. Laba, W., Choinska, A., Rodziewicz, A., and Piegza, M., Keratinolytic abilities of Micrococcus luteus from poultry waste, Brazil. J. Microbiol., 2015, vol. 46, pp. 691–700.

    Article  CAS  Google Scholar 

  16. Lange-Asschenfeldt, B., Marenbach, D., Lang, C., Patzelt, A., Ulrich, M., Maltusch, A., Terhorst, D., Stockfleth, E., Sterry, W., and Lademann, J., Distribution of bacteria in the epidermal layers and hair follicles of the human skin, Skin Pharmacol. Physiol., 2011, vol. 24, pp. 305–311.

    Article  CAS  Google Scholar 

  17. Lesouhaitier, O., Veron, W., Chapalain, A., Madi, A., Blier, A.-S., Dagorn, A., Connil, N., Chevalier, S., Orange, N., and Feuilloley, M., Gram-negative bacterial sensors for eukaryotic signal molecules, Sensors (Basel, Switzerland), 2009, vol. 9, pp. 6967–6990.

    Article  CAS  Google Scholar 

  18. Lyte, M., Freestone, P.P.E., Neal, C.P., Olson, B.A., Haigh, R.D., Bayston, R., and Williams, P.H., Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes, Lancet, 2003, vol. 361, pp. 130–135.

    Article  CAS  Google Scholar 

  19. Matard, B., Meylheuc, T., Briandet, R., Casin, I., Assouly, P., Cavelier-balloy, B., and Reygagne, P., First evidence of bacterial biofilms in the anaerobe part of scalp hair follicles: a pilot comparative study in folliculitis decalvans, J. Eur. Acad. Dermatol. Venereol., 2013, vol. 27, pp. 853–860.

    Article  CAS  Google Scholar 

  20. Matsuura, K., Asano, Y., Yamada, A., and Naruse, K., Detection of Micrococcus luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor, Sensors, 2013, vol. 13, pp. 2484–2493.

    Article  CAS  Google Scholar 

  21. Mauclaire, L. and Egli, M., Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates, FEMS Immun. Med. Microbiol., 2010, vol. 59, pp. 350–356.

    Article  CAS  Google Scholar 

  22. N’Diaye, A., Gannesen, A., Borrel, V., Maillot, O., Enault, J., Racine, P.-J., Plakunov, V., Chevalier, S., Lesouhaitier, O., and Feuilloley, M.G.J., Substance P and calcitonin gene-related peptide: key regulators of cutaneous microbiota homeostasis, Front. Endocrinol., 2016, vol. 8, article 15. https://doi.org/10.3389/fendo.2017.00015

    Article  Google Scholar 

  23. Nozhevnikova, A.N., Botchkova, E.A., and Plakunov, V.K., Multi-species biofilms in ecology, medicine, and biotechnology, Microbiology (Moscow), 2015, vol. 84, pp. 731–750.

    Article  CAS  Google Scholar 

  24. Phillips, K.G., Jacques, S.L., and McCarty, O.J.T., Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope, Phys. Rev. Lett., 2012, vol. 109, article 118105. https://doi.org/10.1103/PhysRevLett.109.118105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plakunov, V.K., Mart’yanov, S.V., Teteneva, N.A., and Zhurina, M.V., A universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models, Microbiology (Moscow), 2016, vol. 85, pp. 509–513.

    Article  CAS  Google Scholar 

  26. Surger, M.J., Angelov, A., Stier, P., Übelacker, M., and Liebl, W., Impact of branched-chain amino acid catabolism on fatty acid and alkene biosynthesis in Micrococcus luteus,Front. Microbiol., 2018, vol. 9, article 374. https://doi.org/10.3389/fmicb.2018.00374

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ten Broeke-Smits, N.J., Kummer, J.A., Bleys, R.L., Fluit, A.C., and Boel, C.H., Hair follicles as a niche of Staphylococcus aureus in the nose; is a more effective decolonisation strategy needed?, J. Hosp. Infect., 2010, vol. 76, pp. 211–214.

    Article  CAS  Google Scholar 

  28. Young, M., Artsatbanov, V., Beller, H.R., Chandra, G., Chater, K.F., Dover, L.G., Goh, E.B., Kahan, T., Kaprelyants, A.S., Kyrpides, N., Lapidus, A., Lowry, S.R., Lykidis, A., Mahillon, J., Markowitz, V., et al., Genome sequence of the fleming strain of Micrococcus luteus, a simple free-living actinobacterium, J. Bacteriol., 2009, vol. 192, pp. 841–860.

    Article  Google Scholar 

  29. Zhurina, M.V., Gannesen, A.V., Mart’yanov, S.V., Teteneva, N.A., Shtratnikova, V.Y., and Plakunov, V.K., Niclosamide as a promising antibiofilm agent, Microbiology (Moscow), 2017, vol. 86, pp. 455–462.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-74-10071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gannesen.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilova, N.D., Solovyeva, T.V., Mart’yanov, S.V. et al. Stimulatory Effect of Epinephrine on Biofilms of Micrococcus luteus C01. Microbiology 89, 493–497 (2020). https://doi.org/10.1134/S0026261720040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720040049

Keywords:

Navigation