Skip to main content
Log in

Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The genes encoding carbonic anhydrase (CA) were found in all anoxygenic purple bacteria. The genes of α- and β-CA were found in purple nonsulfur bacteria of the class Alphaproteobacteria:Rhodospirillum rubrum, Rhodospirillum fulvum, Rhodoblastus acidophilus, and Rhodopseudomonas palustris. The alphaproteobacteria Rhodomicrobium vannielii, Blastochlorisviridis, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodobacter veldkampii, Rhodovulumeuryhalinum, and Rhodovulum sulfidophilum possessed only the β-CA genes. Both nonsulfur purple bacteria of the class Betaproteobacteria (Rubrivivax gelatinosus) and purple sulfur bacteria (class Gammaproteobacteria) contained the α- and β-CA. No CA genes were found in green sulfur bacteria Chlorobaculum limnaeum and Chlorobaculum parvum, as well as in filamentous green nonsulfur bacteria Chloroflexus aurantiacus. However, the β-CA gene was revealed in Oscillochloris trichoides, which belonged to the latter taxonomic group. No γ-CA genes were detected in the genomes of the phototrophic bacteria studied in the present work. Although CA genes were present in all purple bacteria, the α- and β-CA activity was observed only in four species of purple nonsulfur Alphaproteobacteria: Rhodospirillum rubrum, Rhodopseudomonas palustris, Rhodoblastusacidophilus, and Rhodospirillum fulvum. These bacteria are able to synthesize CA under both photoautotrophic and photoheterotrophic conditions in the media with acetate, malate, or fructose. These bacteria (except for Rhodospirillum fulvum, which is unable to grow under aerobic conditions), also exhibit CA activity when grown under aerobic conditions in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J Mol. Biol., 1990, vol. 215, pp. 403–410.

    Article  CAS  Google Scholar 

  2. Badger, M.R. and Bek, E.J., Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle, J. Exp. Bot., 2008, vol. 59, pp. 1525–1541.

    Article  CAS  Google Scholar 

  3. Burnap, R.L., Hagemann, M., and Kaplan, A., Regulation of CO2 concentrating mechanism in cyanobacteria, Life (Basel), 2015, vol. 5, pp. 348–371.

    Article  CAS  Google Scholar 

  4. Capasso, C. and Supuran, C.T., An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria?, J. Enzyme Inhib. Med. Chem., 2015, vol. 30, pp. 325–332.

    Article  CAS  Google Scholar 

  5. Castenholz, R.W. and Pierson, B.K., Isolation of members of the family Chloroflexaceae, in The Procaryotes, Staarr, M.P., Truper, H.G., Ballows, A., and Schlegel, H.G., Eds., Berlin: Springer, 1981, vol. 1, pp. 290–298.

    Google Scholar 

  6. Dahl, C., Sulfur metabolism in phototrophic bacteria, in Modern Topics in the Phototrophic Prokaryotes. Metabolism, Bioenergetics and Omics, Hallenbeck, P., Ed., Springer, 2017, pp. 27–66.

    Google Scholar 

  7. Davis, R.P., The kinetics of the reaction of human erythrocyte carbonic anhydrase. II. The effect of sulfanilamide, sodium sulfide and various chelating agents, J. Amer. Chem. Soc., 1959, vol. 81, pp. 5674–5678.

    Article  CAS  Google Scholar 

  8. DiMario, R.J., Machingura, M.C., Waldrop, G.L., and Moroney, J.V., The many types of carbonic anhydrases in photosynthetic organisms., Plant Sci., 2018, vol. 268, pp. 11–17.

    Article  CAS  Google Scholar 

  9. Frigaard, N.U. and Dahl, C., Sulfur metabolism in phototrophic sulfur bacteria, Adv. Microb. Physiol., 2009, vol. 54, pp. 103–200.

    Article  CAS  Google Scholar 

  10. Furdui, C. and Ragsdale, S.W., The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway, J. Biol. Chem., 2000, vol. 275, pp. 28494–28499.

    Article  CAS  Google Scholar 

  11. Gai, C.S., Lu, J., Brigham, C.J., Bernardi, A.C., and Sinskey, A.J., Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16, AMB Express, 2014, vol. 4, article 2. https://doi.org/10.1186/2191-0855-4-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gill, S.R., Fedorka-Cray, P.J., Tweten, R.K., and Sleeper, B.P., Purification and properties of the carbonic anhydrase of Rhodospirillum rubrum,Arch. Microbiol., 1984, vol. 138, pp. 113–118.

    Article  CAS  Google Scholar 

  13. Imhoff, J.F., Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov., Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 1863–1866.

    Article  CAS  Google Scholar 

  14. Kanehisa, M., Sato, Y., and Morishima, K., BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences, J. Mol. Biol., 2016, vol. 428, pp. 726–731.

    Article  CAS  Google Scholar 

  15. Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucl. Acids Res., 2002, vol. 30, pp. 3059–3066.

    Article  CAS  Google Scholar 

  16. Kumar, S., Stecher, G., and Tamura K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874.

    Article  CAS  Google Scholar 

  17. Larsen, H., On the culture and general physiology of the green sulfur bacteria, J. Bacteriol., 1952, vol. 64, pp. 187–196.

    Article  CAS  Google Scholar 

  18. Leustek, T., Hartwig, R., Weissbach, H., and Brot, N., Regulation of ribulose bisphosphate carboxylase expression in Rhodospirillum rubrum: characteristics of mRNA synthesized in vivo and in vitro, J. Bacteriol., 1988, vol. 170, pp. 4065–4071.

    Article  CAS  Google Scholar 

  19. Ormerod, J.G., Ormerod, K.S., and Gest, H., Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism, Arch. Biochem. Biophys., 1961, vol. 94, pp. 449–463.

    Article  CAS  Google Scholar 

  20. Price, G.D., Badger, M.R., Woodger, F.J., and Long, B.M., Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants, J. Exp. Bot., 2008, vol. 59, pp. 1441–1461.

    Article  CAS  Google Scholar 

  21. Puskas, L.G., Inui, M., Zahn, K., and Yukawa, H., A periplasmic, alpha-type carbonic anhydrase from Rhodopseudomonas palustris is essential for bicarbonate uptake, Microbiology (SGM), 2000, vol. 146, pp. 2957–2966.

    Article  CAS  Google Scholar 

  22. Rae, B.D., Long, B.M., Badger, M.R., and Price, G.D., Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in Cyanobacteria and some Proteobacteria,Microbiol. Mol. Biol. Rev., 2013, vol. 77, pp. 357–379.

    Article  CAS  Google Scholar 

  23. Romagnoli, S. and Tabita, F.R., Carbon dioxide metabolism and its regulation in nonsulfur purple photosynthetic bacteria, in The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, Hunter, C.N., Daldal, F., Thurnauer, M.C., and Beatty, J.T., Eds., Dordrecht: Springer, 2009, vol. 28, pp. 563–576.

    Google Scholar 

  24. Sarles, L.S. and Tabita, F.R., Derepression of the synthesis of D-ribulose 1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum,J. Bacteriol., 1983, vol. 153, pp. 458–464.

    Article  CAS  Google Scholar 

  25. Sawaya, M.R., Cannon, G.C., Heinhorst, S., Tanaka, S., Williams, E.B., Yeates, T.O., and Kerfeld, C.A., The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two, J. Biol. Chem., 2006, vol. 281, pp. 7546–7555.

    Article  CAS  Google Scholar 

  26. Schlegel, H.G. and Pfennig, N., Enriched culture for various purple sulfur bacteria, Arch. Mikrobiol., 1961, vol. 38, pp. 1–39.

    Article  CAS  Google Scholar 

  27. Supuran, C.T. and Capasso, C., An overview of the bacterial carbonic anhydrases, Metabolites, 2017, vol. 7. pii: E56. https://doi.org/10.3390/metabo7040056

    Article  CAS  PubMed  Google Scholar 

  28. Ueda, K., Nishida, H., and Beppu, T., Dispensabilities of carbonic anhydrase in proteobacteria, Int. J. Evol. Biol., 2012, vol. 2012, article 324549. https://doi.org/10.1155/2012/324549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Ivanovsky.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovsky, R.N., Keppen, O.I., Lebedeva, N.V. et al. Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria. Microbiology 89, 266–272 (2020). https://doi.org/10.1134/S0026261720020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720020058

Keywords:

Navigation