Skip to main content
Log in

The Metabolism of Thermophilic Hydrolytic Bacterium Thauera hydrothermalis Strain par-f-2 Isolated from the West Siberian Subsurface Biosphere

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A novel moderately thermophilic, organotrophic bacterium, strain Par-f-2, was isolated from a sample of hot water emerging from a 2775 m-deep well in Western Siberia, Russia. Cells of the novel isolate were non-sporulating Gram-negative motile rods, often forming groups and aggregates. Strain Par-f-2 grew at 25–60°C, pH 6.0–9.5, and at NaCl concentration from 5 to 7 g L–1. The isolate is an aerobe capable of utilizing mono- and polysaccharides, yeast extract, and some organic acids and aminoacids as the carbon and energy sources. Microaerobic growth was observed. Elemental sulfur, sulfate, nitrate, fumarate, and arsenate were not reduced. The major fatty acids were C16:0 (69.7%) and C16:1ω7 (19.3%). The G+C content of the DNA was 63.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed Thauera hydrothermalis (Betaproteobacteria) being its closest relative with 99.8% of 16S rRNA gene sequences identity. Strain Par-f-2 was deposited in the DSMZ and VKM (=DSM 26751=VKM V-2822).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., Tatusova, T., Thomson, N., and White, O., Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation, OMICS, 2008, vol. 12, no. 2, pp. 137–141.

    Article  CAS  Google Scholar 

  2. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseev, M.A., and Pevzner, P.A., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol., 2012, vol. 19, pp. 455–477.

    Article  CAS  Google Scholar 

  3. Banks, D., Parnachev, V.P., Karnachuk, O.V., Arkhipov, A.L., Gundersen, P., and Davis, J., Hydrogeochemical data report: the sampling of selected localities in Kemerovo oblast’ and Tomsk oblast’, Siberia, Russian Federation, Nor. Geol. Unders. report, 2011.

  4. Bertani, G., Studies on lysogenesis I. The mode of phageliberation by lysogenic Eschericia coli, J. Bacteriol., 1951, vol. 62, no. 3, pp. 293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Boden, R., Hutt, L.P., and Rae, A.W., Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1191–1205.

    Article  CAS  Google Scholar 

  6. Bonch-Osmolovskaya, E.A., Sokolova, T.G., Kostri-kina, N.A., and Zavarzin, G.A., Desulfurella acetovorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium, Arch. Microbiol., 1990, vol. 153, pp. 151–155.

    Article  Google Scholar 

  7. Davidson, M.M., Silver, B.J., Onstott, T.C., Moser, D.P., Gihring, T.M., Pratt, L.M., Boice, E.A., Sherwood Lollar, B., Lippmann-Pipke, J., Pfiffner, S.M., Kieft, T.L., Seymore, W., and Ralston, C., Capture of planktonic microbial diversity in fractures by long-term monitoring of flowing boreholes, Evander basin, South Africa, Geomicrobiol. J., 2011, vol. 28, pp. 275–300.

    Article  Google Scholar 

  8. Frank, Y.A., Kadnikov, V.V., Gavrilov, S.N., Banks, D., Gerasimchuk, A.L., Podosokorskaya, O.A., Merkel, A.Y., Chernyh, N.A., Mardanov, A.V., Ravin, N.V., Karnachuk, O.V., and Bonch-Osmolovskaya, E.A., Stable and variable parts of microbial community in Siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study, Front. Microbiol., 2016, vo. 7, pp. 1–15.

    Google Scholar 

  9. Gihring, T.M., Moser, D.P., Lin, L.H., Davidson, M., Onstott, T.C., Morgan, L., Milleson, M., Kieft, T.L., Trimarco, E., Balkwill, D.L., and Dollhopf, M.E., The distribution of microbial taxa in the subsurface water of the Kalahari shield, South Africa, Geomicrobiol. J., 2006, vol. 23, pp. 415–430.

    Article  CAS  Google Scholar 

  10. Heider, J. and Fuchs, G., “Thauera”, in Bergey’s Manual of Systematics of Archaea and Bacteria, Brenner, D.J., Krieg, N.R., and Staley, J.T., Eds., Chichester; Wiley, 2005, pp. 907–913.

    Google Scholar 

  11. Inagaki, F., Takai, K., Hirayama, H., Yamato, Y., Nealson, K.H., and Horikoshi, K., Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine, Extremophiles, 2003, vol. 7, pp. 307–317.

    Article  CAS  Google Scholar 

  12. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, pp. 772–780.

    Article  CAS  Google Scholar 

  13. Kevbrin, V.V. and Zavarzin, G.A., The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum, Microbiology (Moscow), 1992, vol. 61, no. 5, pp. 563–567.

    Google Scholar 

  14. Kumar, S., Stecher, G., and Tamura, K., MEGA7 : Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Evol. Genet. Anal., 2016, vol. 33, pp. 1870–1874.

    CAS  Google Scholar 

  15. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., and Henrissat, B., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 2014, vol. 42, pp. D490–D495.

    Article  CAS  Google Scholar 

  16. Luo, H., Quan, C-L., Peng, C., and Gao, F., Recent development of Ori-Finder system and DoriC database for microbial replication origins, Brief Bioinform., 2018, pp. 1–11.

  17. Magnabosco, C., Ryan, K., Lau, M.C.Y., Kuloyo, O., Sherwood Lollar, B., Kieft, T.L., van Heerden, E., and Onstott, T.C., A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust, ISME J., 2016, vol. 10, pp. 730–741.

    Article  CAS  Google Scholar 

  18. Minnikin, D.E., O’donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H., An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids, J. Microbiol. Methods, 1984, vol. 2, no. 5, pp. 233–241.

    Article  CAS  Google Scholar 

  19. Podosokorskaya, O.A., Bonch-Osmolovskaya, E.A., Beskorovaynyy, A.V., Toshchakov, S.V., Kolganova, T.V., and Kublanov, I.V., Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium, Int. J. Syst. Evol. Microbiol., 2014, vol., 64, pp. 2657–2661.

    Article  CAS  Google Scholar 

  20. Podosokorskaya, O.A., Bonch-Osmolovskaya, E.A., Novikov, A.A., Kolganova, T.V., and Kublanov, I.V., Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae, Int. J. Syst. Evol. Microbiol., 2013a, vo. 63, pp. 86–92.

    Article  CAS  Google Scholar 

  21. Podosokorskaya, O.A., Kadnikov, V.V., Gavrilov, S.N., Mardanov, A.V., Merkel, A.Y., Karnachuk, O.V., Ravin, N.V., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae, Environ. Microbiol., 2013b, vol. 15, pp. 1759–1771.

    Article  CAS  Google Scholar 

  22. Podosokorskaya, O.A., Merkel, A.Y., van Heerden, E., Cason, E.D., Kopitsyn, D.S., Vasilieva, M., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Sporosalibacterium tautonense sp. nov., a thermotolerant, halophilic, hydrolytic bacterium isolated from a gold mine, and emended description of the genus Sporosalibacterium, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1457–1461.

    Article  CAS  Google Scholar 

  23. Qiao, N., Xi, L., Zhang, J., Liu, D., Ge, B., and Liu, J., Thauera sinica sp. nov. a phenol derivative-degrading bacterium isolated from activated sludge, Antonie Van Leeuwenhoek, 2018, vol. 111, no. 6, pp. 945–954.

    Article  CAS  Google Scholar 

  24. Simon, J., and Klotz, M.G., Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations, Biochimica et Biophysica Acta (BBA) -Bioenergetics, 2013, vol. 1827, no. 2, pp. 114–135.

    Article  CAS  Google Scholar 

  25. Stupakova, A.V., Stafeev, A.N., Suslova, A.A., and Gilaev, R.M., Paleogeographic conditions in the West Siberian Basin during the Tithonian–Early Berriasian, Moscow University Geology Bulletin, 2017, vol. 72, no. 1, pp. 8–17.

    Article  Google Scholar 

  26. Takai, K., Moser, D.P., Flaun, M.D.E., Onstott, T.C., and Fredrickson, J.K., Archaeal diversity in waters from deep South African gold mines, Appl. Environ. Microbiol., 2001, vol. 67, pp. 5750–5760.

    Article  CAS  Google Scholar 

  27. Ulmishek, G.F., Petroleum geology and resources of the West Siberian basin, Russia, US Geol. Surv. Bull., 2003, p. 49.

  28. Whitman, W.B., Coleman, D.C., and Wiebe, W.J., Prokaryotes: the unseen majority, Proc. Natl. Acad. Sci. USA., 1998, vol. 95, no. 12, pp. 6578–6583.

    Article  CAS  Google Scholar 

  29. Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.

    CAS  PubMed  Google Scholar 

  30. Yang, G.Q., Zhang, J., Kwon, S.W., Zhou, S.G., Han, L.C., Chen, M., Ma, C., and Zhuang, L., Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 873–878.

    Article  CAS  Google Scholar 

  31. Yang, L., Muhadesi, J.B., Wang, M.M., Wang, B.J., Liu, S.J., and Jiang, C.Y., Thauera hydrothermalis sp. nov., a thermophilic bacterium isolated from hot spring, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, no. 10, pp. 3163 –3168.

    Article  CAS  Google Scholar 

  32. Zhang, G., Dong, H., Jiang, H., Xu, Z., and Eberl, D.D., Unique microbial community in drilling fluids from Chinese continental scientific drilling, Geomicrobiol. J., 2006, vol. 23, pp. 499–514.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Olga Karnachuk (Tomsk State University, Tomsk) and Sergey Gavrilov (Winogradsky Institute of Microbiology, Research Center for Biotechnology, RAS, Moscow) for their help with sampling.

Funding

Genomic sequencing and analysis and phylogenetic analysis of the novel isolate were supported by RSF grant no. 17-74-30025. Antimicrobial activity tests were performed under support of RFBR project № 16-54-76022 ЭРА_а “Extremopharm”. CFA determination was supported by the Russian Federation Presidential Grant Council (grant MK-6493.2018.3). Basic microbiological studies (including microscopy) were supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Podosokorskaya.

Ethics declarations

The authors declare that there are no conflicts of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podosokorskaya, O.A., Teplyuk, A.V., Zayulina, K.S. et al. The Metabolism of Thermophilic Hydrolytic Bacterium Thauera hydrothermalis Strain par-f-2 Isolated from the West Siberian Subsurface Biosphere. Microbiology 88, 556–562 (2019). https://doi.org/10.1134/S0026261719050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719050126

Keywords:

Navigation