Skip to main content
Log in

Diversity and Antimicrobial Activity of Endophytic Actinomycetes Isolated from Plant Roots in Thailand

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In this study, 37 endophytic actinomycetes were isolated from roots of 14 plant species obtained in Thailand, where biological diversity is known to be high. The isolates were identified as members of the genera Micromonospora (21 isolates), Streptomyces (14 isolates), Plantactinospora (1 isolate), and Polymorphospora (1 isolate) based on their phenotypic characteristics and the 16S rRNA gene sequence . The most frequent isolates (56.8%) were members of the genus Micromonospora. The antimicrobial activity screening showed that seven Micromonospora isolates and eight Streptomyces isolates were active against Bacillus subtilis ATCC 6633, Kocuria rhizophila ATCC 9341 and Staphylococcus aureus ATCC 6538p. To our knowledge, the isolates showed the difference of antimicrobial activity based on the production media. Moreover, this study suggested Thai plant species to be valuable sources of interesting endophytic actinomycetes producing antimicrobial metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Arai, T., Culture Media for Actinomycetes, Tokyo: Soc. Actinomycete, 1975.

  2. Berdy, J., Bioactive microbial metabolites, J. Antibiot., 2005, vol. 58, pp. 1‒26.

    Article  CAS  PubMed  Google Scholar 

  3. Bunyoo, C., Duangmal K., Nuntagij A., and Thamchaipenet, A., Characterization of endophytic actinomycetes isolated from wattle trees (Acacia auriculiformis A. Cunn. ex. Benth.) in Thailand, Thai J. Genet., 2009, vol. 2, pp. 155‒163.

    Google Scholar 

  4. Carro, L., Pujic, P., Trujillo, M.E., and Normand, P., Micromonospora is a normal occupant of actinorhizal nodules, J. Biosci., 2013, vol. 38, pp. 685‒693.

    Article  PubMed  Google Scholar 

  5. Coombs, J.T. and Franco, C.M., Isolation and identification of actinobacteria from surface-sterilized wheat roots, Appl. Environ. Microbiol., 2003, vol. 69, pp. 5603‒5608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding, L., Goerls, H., Dornblut, K., Lin, W.H., Maier, A., Fiebig, H.H., Hertweck, C., and Bacaryolanes, A.-C., Rare bacterial caryolanes from a mangrove endophyte, J. Nat. Prod., 2015, vol. 78, pp. 2963‒2967.

    Article  CAS  PubMed  Google Scholar 

  7. Ding, L., Maier, A., Fiebig, H.H., Lin, W.H., Peschel, G., Hertweck, C., and Kandenols, A.-E., Eudesmenes from an endophytic Streptomyces sp. of the mangrove tree Kandelia candel, J. Nat. Prod., 2012, vol. 75, pp. 2223‒2227.

    Article  CAS  PubMed  Google Scholar 

  8. Ezra, D., Castillo, U.F., Strobel, G.A., Hess, W.M., Porter, H., Jensen, J.B., Condron, M.A., Teplow, D.B., Sears, J., Maranta, M., Hunter, M., Weber, B., and Yaver, D., Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp., Microbiology, 2004, vol. 150, pp. 785‒793.

    Article  CAS  PubMed  Google Scholar 

  9. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783‒791.

    Article  PubMed  Google Scholar 

  10. Gangwar, M., Khushoo, and Saini, P., Diversity of endophytic actinomycetes in Musa acuminata and their plant growth promoting activity, Int. J. Biol. Chem. Sci., 2014, pp. 13‒23.

  11. Gauze, G.F., Preobrazhenskaya, T.P., Sveshnikova, M.A., Terekhova, L.P., and Maximova, T.S., A guide to actinomycetes: genera Streptomyces, Streptoverticillum, Chainia, in Opredelitel’ aktinomitsetov (Identification Manual of Actinomycetes), Moscow: Nauka, 1983.

  12. Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H., and Rai, M., Endophytic actinobacteria of medicinal plants: diversity and bioactivity, Antonie van Leeuwenhoek, 2015, vol. 108, pp. 267‒289.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., and Kloepper, J.W., Bacterial endophytes in agricultural crops., Can. J. Microbiol., 1997, vol. 43, pp. 895‒914.

    Article  CAS  Google Scholar 

  14. Igarashi, Y., Ogura, H., Furihata, K., Oku, N., Indananda, C., and Thamchaipenet, A., Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp., J. Nat. Prod., 2011a, vol. 74, pp. 670‒674.

    Article  CAS  PubMed  Google Scholar 

  15. Igarashi, Y. Trujillo, M.E., Martínez-Molina, E., Yanase, S., Miyanaga, S., Obata, T., Sakurai, H., Saiki, I., Fujita, T., and Furumai, T., Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov., Bioorg. Med. Chem. Lett., 2007, vol. 17, pp. 3702‒3705.

    Article  CAS  PubMed  Google Scholar 

  16. Igarashi, Y., Yanase, S., Sugimoto, K., Enomoto, M., Miyanaga, S., Trujillo, M.E., Saiki, I., and Kuwahara, S., Lupinacidin C, an inhibitor of tumor cell invasion from Micromonospora lupini, J. Nat Prod., 2011b, vol. 74, pp. 862‒865.

    Article  CAS  PubMed  Google Scholar 

  17. Kelly, K.L., ISCC-NBS Color-Name Charts Illustrated With Centroid Colors, Washington: Natl. Bureau Standards, 1964.

    Google Scholar 

  18. Kimura, M.A., Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol Evol, 1980, vol. 16, pp. 111‒120.

    Article  CAS  PubMed  Google Scholar 

  19. Kudo, T., Matsushima, K., Itoh, T., Sasaki, J., and Suzuki, K., Description of four new species of the genus Kineosporia: Kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia, Int J. Syst Bacteriol, 1998, vol. 48 pp. 1245‒1255.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870‒1874.

    Article  CAS  PubMed  Google Scholar 

  21. Kuncharoen, N., Kudo, T., Ohkuma, M., and Tanasupawat, S., Micromonospora azadirachtae sp. nov., isolated from roots of Azadirachta indica A. Juss. var. siamensis Valeton, Antonie van Leeuwenhoek, 2019, vol. 112, pp. 253‒262.

    Article  CAS  PubMed  Google Scholar 

  22. Kuncharoen, N., Pittayakhajonwut, P., and Tanasupawat, S., Micromonospora globbae sp nov., an endophytic actinomycete isolated from roots of Globba winitii C. H. Wright, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 1073‒1077.

    Article  CAS  PubMed  Google Scholar 

  23. Küster, E. and Williams, S.T., Selection of media for isolation of Streptomycetes, Nature, 1964, vol. 202, pp. 928‒929.

    Article  Google Scholar 

  24. Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Chichester: Wiley, 1991.

    Google Scholar 

  25. Li, J., Zhao, G.Z., Chen, H.H., Wang, H.B., Qin S., Zhu W.Y., Xu, L.H., Jiang, C.L., and Li, W.J., Antitumour and antimicrobial activities of endophytic Streptomycetes from pharmaceutical plants in rainforest, Lett. Appl. Microbiol., 2008, vol. 47, pp. 574‒580.

    Article  CAS  PubMed  Google Scholar 

  26. Matsumoto, A. and Takahashi, Y., Endophytic actinomycetes: promising sources of novel bioactive compounds, J. Antibiot., 2017, vol. 70, pp. 514‒519.

    Article  CAS  PubMed  Google Scholar 

  27. Mearns-Spragg, A., Bregu, M., Boyd, K.G., and Burgess, J.G., Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria, Lett. Appl. Microbiol., 1998, vol. 27, pp. 142‒146.

    Article  CAS  PubMed  Google Scholar 

  28. Niemhom, N., Chutrakul, C., Suriyachadkun, C., and Thawai, C., Phytohabitans kaempferiae sp nov., an endophytic actinomycete isolated from the leaf of Kaempferia larsenii, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 2917‒2922.

    Article  CAS  PubMed  Google Scholar 

  29. Okazaki, T. Studies on actinomycetes isolated from plant leaves, in Selective Isolation of Actinomycetes, Kurtboke, I., Hayakawa, M., Terekhova, L., and Okazaki, T., Eds., Queensland: Natl. Libr. Australia, 2003, pp. 102‒122.

    Google Scholar 

  30. Passari, A.K., Mishra, V.K., Saikia, R., Gupta, V.K., and Singh, B.P., Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential, Front. Microbiol., 2015, vol. 6, pp. 1‒13.

    Article  Google Scholar 

  31. Qin, S., Li, J., Chen, H.-H. Zhao, G.-Z., Zhu, W.-Y., Jiang, Ch.-L., Xu, L.-H., and Li, W.-J., Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China, Appl. Environ. Microbiol., 2009, vol. 75, pp. 6176‒6186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rao, H.C., Rakshith, D., and Satish, D., Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India, Front. Biol., 2015, vol. 10, pp. 528‒536.

    Article  CAS  Google Scholar 

  33. Rosenblueth, M. and Martinez-Romero, E., Bacterial endophytes and their interactions with hosts., Mol. Plant-Microbe Interact., 2006, vol. 19, pp. 827‒837.

    Article  CAS  PubMed  Google Scholar 

  34. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406‒425.

    CAS  PubMed  Google Scholar 

  35. Shirling, E.B. and Gottlieb, D., Methods for characterization of Streptomyces species, Int. J. Syst. Bacteriol., 1966, vol. 16, pp. 313‒340.

    Article  Google Scholar 

  36. Shutsrirung, A., Chromkaew, Y., Pathom-Aree, W., Choonluchanon, S., and Boonkerd, N., Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity, Soil Sci. Plant Nutr., 2013, vol. 59, pp. 322‒330.

    Article  CAS  Google Scholar 

  37. Stackebrandt, E., Rainey, F.A., and Ward-Rainey, N.L., Proposal for a new hierarchic classification system, Actinobacteria classis nov., Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 479‒491.

    Article  Google Scholar 

  38. Staneck, J.L. and Roberts, G.D., Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography, Appl. Microbiol., 1974, vol. 28, pp. 226‒231.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Strobel, G.A. and Daisy, B., Bioprospecting for microbial endophytes and their natural products, Microbiol. Mol. Biol. Rev., 2003, vol. 67, pp. 492‒502.

    Article  CAS  Google Scholar 

  40. Suriyachadkun, C., Chunhametha, S., Thawai, C., Tamura, T., Potacharoen, W., Kirtikara, K., and Sanglier, J.J., Planotetraspora thailandica sp. nov., isolated from soil in Thailand, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 992‒997.

    Article  CAS  PubMed  Google Scholar 

  41. Taechowisan, T. and Lumyong, S., Activity of endophytic actinomycetes from roots of Zingiber officinale and Alpinia galanga against phytopathogenic fungi, Ann. Microbiol., 2003, vol. 53, pp. 291‒298.

    Google Scholar 

  42. Trujillo, M.E., Alonso-Vega, P., Rodriguez, R., Carro, L., Cerda, E., Alonso, P., and Martinez-Molina, E., The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius, ISME J., 2010, vol. 4, pp. 1265‒1281.

    Article  PubMed  Google Scholar 

  43. Valdes, M., Perez, N.O., Estrada de los Santos, P., Caballero-Mellado, J., Pena-Cabriales, J.J., Normand, P., and Hirsch, A.M., Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen, Appl. Environ. Microbiol., 2005, vol. 71, pp. 460‒466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Verma, V.C., Gond, S.K., Kumar, A., Mishra, A., Kharwar, R.N., and Gange, A.C., Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity, Microb. Ecol., 2009, vol. 57, pp. 749‒756.

    Article  PubMed  Google Scholar 

  45. Williams, S.T. and Cross, T., Chapter XI. Actinomycetes, Methods Microbiol., 1971, vol. 4, pp. 295‒334.

    Article  Google Scholar 

  46. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J., Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1613‒1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, K., Penttinen, P., Guan, T., Xiao, J., Chen, Q., Xu, J., Lindström, K., Zhang, L., Zhang, X., and Strobel, G.A., The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China, Curr. Microbiol., 2011, vol. 62, pp. 182‒190.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We faithfully thank Dr. A. Matsumoto Department of Drug Discovery, Kitasato University for her help with the antimicrobial activity assay. We also thank the 2015 Royal Golden Jubilee Ph. D. Program as a scholarship to N. K. for financial support under the Thailand Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tanasupawat.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the a-uthors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuncharoen, N., Fukasawa, W., Mori, M. et al. Diversity and Antimicrobial Activity of Endophytic Actinomycetes Isolated from Plant Roots in Thailand. Microbiology 88, 479–488 (2019). https://doi.org/10.1134/S0026261719040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719040088

Keywords:

Navigation