Advertisement

Microbiology

, Volume 88, Issue 3, pp 335–342 | Cite as

Thermophilic Bacteria in Lake Baikal Bottom Sediments Associated with Hydrocarbon Discharge

  • O. N. PavlovaEmail author
  • A. V. Lomakina
  • A. S. Novikova
  • S. M. Chernitsyna
  • T. A. Khanaeva
  • T. V. Pogodaeva
  • A. V. Khabuev
  • T. I. Zemskaya
EXPERIMENTAL ARTICLES

Abstract—

The research was aimed at detection of thermophilic microorganisms in Lake Baikal low-temperature sediments associated with discharge of gas-saturated fluids. Members of the order Clostridiales were revealed in enrichment cultures obtained from the bottom sediments at three sites (methane seep, oil-methane seep, and mud volcano). No thermophilic prokaryotes were found in the enrichment culture with sediment samples from a background area. The presence of thermophilic microorganisms at the sites of hydrocarbon discharge may result from their migration to the bottom surface with the gas-bearing mineralized fluid moving along the fracture zones. Unlike marine cold sediments, where the endospores of thermophilic bacteria belong to strict anaerobes existing due to fermentation of organic substrates or sulfate reduction, Lake Baikal sediments associated with discharge of gas-saturated fluids were found to contain facultatively anaerobic thermophilic prokaryotes.

Keywords:

thermophilic microorganisms gas-bearing sediments facultative anaerobes Thermaerobacter sp. Lake Baikal 

Notes

FUNDING

This work was carried out within the framework of the State Assignment no. 0345-2019-0007 (expedition studies) and 0345-2018-0001 (lithologic investigations and chemical analysis of pore waters) and was supported by the Russian Foundation for Basic Research, project no. 16-04-00181_а (microbiological and molecular biological studies).

COMPLIANCE WITH ETHICAL STANDARDS

Statement of the welfare of animals. No studies with the use of animals as the objects were carried out in this work.

Conflict of interests. The authors declare that they have no conflict of interests.

REFERENCES

  1. 1.
    Belkova, N.L., Parfenova, V.V., Suslova, M.Yu., Ahn, T.S., and Tazaki, K., Biodiversity and activity of the microbial community in the Kotelnikovsky hot springs (Lake Baikal), Biol. Bull. (Moscow), 2005, vol. 32, pp. 549–555.CrossRefGoogle Scholar
  2. 2.
    Bonch-Osmolovskaya, E.A., Metabolic diversity of thermophilic prokaryotes–what’s new?, in Extremophiles: Microbiology and Biotechnology, Anitori, R., Ed., Beaverton: Horizon, 2012, pp. 109–130.Google Scholar
  3. 3.
    Chakraborty, A., Ellefson, E., Li, C., Gittins, D., Brooks, J.M., Bernard, B.B., and Hubert, C.R.J., Thermophilic endospores associated with migrated thermogenic hydrocarbons in deep Gulf of Mexico marine sediments, ISME J., 2018, vol. 12, pp. 1895–1906.CrossRefGoogle Scholar
  4. 4.
    Chernitsyna, S.M., Mamaeva, E.V., Lomakina, A.V., Pogodaeva, T.V., Galach’yants, Yu.P., Bukin, S.V., Pimenov, N.V., Khlystov, O.M., and Zemskaya, T.I., Phylogenetic diversity of microbial communities of the Posolsk Bank bottom sediments, Lake Baikal, Microbiology (Moscow), 2016, vol. 85, pp. 672–680.CrossRefGoogle Scholar
  5. 5.
    Cuylaerts, M., Naudts, L., Casier, R., Khabuev, A.V., Belousov, O.V., Kononov, E.E., Khlystov, O., and De Batist, M., Distribution and morphology of mud volcanoes and other fluid flow-related lake-bed structures in Lake Baikal, Russia, Geo-Mar. Lett., 2012, vol. 32, pp. 383–394.CrossRefGoogle Scholar
  6. 6.
    De Rezende, J.R., Kjeldsen, K.U., Hubert, C.R.J., Finster, K., Loy, A., and Jørgensen, B.B., Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years, ISME J., 2013, vol. 7, pp. 72–84.CrossRefGoogle Scholar
  7. 7.
    Duchkov, A.D., Lysak, S.V., Golubev, V.A., Dorofeeva, R.P., and Sokolova, L.S., Heat flow and geotemperature fiald of the Baikal region, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 287–303.Google Scholar
  8. 8.
    Fardeau, M.-L., Barsotti, V., Cayol, J.-L., Guasco, S., Michotey, V., Joseph, M., Bonin, P., and Ollivier, B., Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes, Extremophiles, 2010, vol. 14, pp. 241–247.CrossRefGoogle Scholar
  9. 9.
    Golubev, V.A., Heat flow through Lake Baikal depression, Doklady AN SSSR, 1979, vol. 245, no. 6, pp. 1333–1336.Google Scholar
  10. 10.
    Han, C., Gu, W., Zhang, X., Lapidus, A., Nolan, M., Copeland, A., Lucas, S., Del Rio, T.G., Tice, H., Cheng, J.F., Tapia, R., Goodwin, L., Pitluck, S., Pagani, I., Ivanova, N., et al., Complete genome sequence of Thermaerobacter marianensis type strain (7p75a), Stand. Genom. Sci., 2010, vol. 3, pp. 337–345.Google Scholar
  11. 11.
    Hubert, C., Arnosti, C., Brüchert, V., Loy, A., Vandieken, V., and Jørgensen, B.B., Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature, Environ. Microbiol., 2010, vol. 12, pp. 1089–1104.CrossRefGoogle Scholar
  12. 12.
    Hubert, C., Loy, A., Nickel, M., Arnosti, C., Baranyi, C., Brüchert, V., Ferdelman, T., Finster, K., Christensen, F.M., De Rezende, J.R., Vandieken, V., and Jørgensen, B.B., A constant flux of diverse thermophilic bacteria into the cold Arctic seabed, Science, 2009, vol. 325, pp. 1541–1544.CrossRefGoogle Scholar
  13. 13.
    Isaksen, M.F., Bak, F., and Jørgensen, B.B., Thermophilic sulfate-reducing bacteria in cold marine sediment, FEMS Microbiol. Ecol., 1994, vol. 14, pp. 1–8.CrossRefGoogle Scholar
  14. 14.
    Kalashnikov, A.M., Gaisin, V.A., Sukhacheva, M.V., Namsaraev, B.B., Panteleeva, A.N., Nuyanzina-Boldareva, E.N., Kuznetsov, B.B., and Gorlenko, V.M., Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk, Microbiology (Moscow), 2014, vol. 83, pp. 407–421.CrossRefGoogle Scholar
  15. 15.
    Khlystov, O.M., De Batist, M., Shoji, H., Hachikubo, A., Nishio, S., and Naudt, L., Gas hydrate of Lake Baikal: discovery and varieties, J. Asian. Earth Sci., 2013, vol. 62, pp. 162–166.CrossRefGoogle Scholar
  16. 16.
    Khlystov, O.M., Minami, H., Hachikubo, A., Yamashita, S., De Batist, M., Nauds, L., Khabuev, A.V., Chenskiy, A.G., Gubin, N.A., and Vorobyeva, S.S., Age of mud breccia from mud volcanoes in Academician Ridge, Lake Baikal, Geodyn. Tectonophys., 2017, vol. 8, pp. 923–932.CrossRefGoogle Scholar
  17. 17.
    Klerkx, J., De Batist, M., Poort, J., Hus, R., VanRensbergen, P., Khlystov, O.M., and Granin, N., Tectonically controlled methane escape in Lake Baikal, in Advances in the Geological Storage of Carbon Dioxide, NATO Sci. Ser. IV. Earth Environ. Sci., 2006, vol. 65, pp. 203–219.Google Scholar
  18. 18.
    Kontorovich, A.E., Kashirtsev, V.A., Moskvin, V.I., Burshtein, L.M., Zemskaya, T.I., Kostyreva, E.A., Kalmychkov, G.V., and Khlystov, O.M., Petroleum potential of Baikal deposits, Russ. Geol. Geophys. (Novosibirsk), 2007, vol. 12, pp. 1046–1053.CrossRefGoogle Scholar
  19. 19.
    Kovaleva, O.L., Merkel, A.Y., Novikov, A.A., Baslerov, R.V., Toshchakov, S.V., and Bonch-Osmolovskaya, E.A., Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov., Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 549–555.CrossRefGoogle Scholar
  20. 20.
    Kozhov, M., Geography and hydrology of Baikal, in Lake Baikal and Its Life. Monographiae Biologicae, Dordrecht: Springer, 1963, vol. 11, pp. 5–55.CrossRefGoogle Scholar
  21. 21.
    Kuzmin, M.I., Karabanov, E.B., Kawai, T., Williams, D., Bychinsky, V.A., Kerber, E.V., Kravchinsky, V., Bezrukova, E., Prokopenko, A.A., Geletii, V.F., Kalmychkov, G.V., Goreglyad, A.V., Antipin, V.S., Khomutova, M.Yu., Soshina, N.M., et al., Deep drilling on Lake Baikal: main results, Russ. Geol. Geophys. (Novosibirsk), 2001, vol. 42, pp. 8–34.Google Scholar
  22. 22.
    Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., New York: Wiley, 1991, pp. 115–175.Google Scholar
  23. 23.
    Lavrenteva, E.V., Shagzhina, A.P., Babasanova, O.B., Dunaevsky, Y.E., Barkhutova, D.D., and Namsaraev, Z.B., The study of two alkaliphilic thermophile bacteria of the Anoxybacillus genus, Appl. Biochem. Microbiolol., 2009, vol. 45, pp. 484–488.CrossRefGoogle Scholar
  24. 24.
    Lebedeva, E.V., Of, S., Zumbragel, S., Kruse, M., Shagzhina, A., Lücker, S., Maixner, F., Lipski, A., Daims, H., and Spieck, E., Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring, FEMS Microbiol. Ecol., 2010, vol. 75, pp. 195–204.CrossRefGoogle Scholar
  25. 25.
    Müller, A.L., De Rezende, J.R., Hubert, C.R.J., Kjeldsen, K.U., Lagkouvardos, I., Berry, D., Jørgensen, B.B., and Loy, A., Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents, ISME J., 2014, vol. 8, pp. 1153–1165.CrossRefGoogle Scholar
  26. 26.
    Naudts, L., Khlystov, O., Granin, N., Chensky, A., Poort, J., and De Batist, M., Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank, Lake Baikal, Geo-Mar. Lett., 2012, vol. 32, pp. 395–406.CrossRefGoogle Scholar
  27. 27.
    Pavlova, O.N., Bukin, S.V., Gorshkov, A.G., Khanaeva, T.A., and Zemskaya, T.I., Microorganisms of Lake Baikal: from psychrophilic hydrocarbon-oxidizing aerobed to thermophilic mixotrophs, 1 Rossiiskii mikrobiologicheskii kongress (1st Russian Microbiological Congress), Reshetilova, T.A., Ed., Moscow: Voda: Khim. Ekol., 2017, pp. 68–69.Google Scholar
  28. 28.
    Pogodaeva, T.V., Lopatina, I.N., Khlystov, O.M., Egorov, A.V., and Zemskaya, T.I., Background composition of pore waters in Lake Baikal bottom sediments, J. Great Lakes Res., 2017, vol. 43, pp. 1030–1043.CrossRefGoogle Scholar
  29. 29.
    Pogodaeva, T.V., Zemskaya, T.I., Golobokova, L.P., Khlystov, O.M., Minami, H., and Sakagami, H., Chemical composition of pore waters of bottom sediments in different Baikal basins, Russ. Geol. Geophys. (Novosibirsk), 2007, vol. 48, pp. 886–900.CrossRefGoogle Scholar
  30. 30.
    Poort, J., Khlystov, O.M., Naudts, L., Duchkov, A.D., Shoji, H., Nishio, S., De Batist, M., Hachikubo, A., Kida, M., Minami, H., Manakov, A.Y., Kulikova, M.V., and Krylov, A.A., Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal, Geo-Mar. Lett., 2012, vol. 32, pp. 407–417.CrossRefGoogle Scholar
  31. 31.
    Praktikum po mikrobiologii (Practical Course in Microbiology), Netrusov, A.I., Ed., Moscow: Akademiya, 2005.Google Scholar
  32. 32.
    Radnagueva, A.A., Lavrentieva, E.V., Budagaeva, V.G., Barkhutova, D.D., and Namsaraev, B.B., Organotrophic bacteria of the Baikal Rift Zone hot springs, Microbiology (Moscow), 2016, vol. 85, pp. 367–378.CrossRefGoogle Scholar
  33. 33.
    Rozanov, A.S., Bryanskaya, A.V., Kotenko, A.V., and Peltek, S.E., Draft genome sequence of Thermoactinomyces sp. Gus2-1 isolated from the hot-spring Gusikha in Bargusin Valley (Baikal Rift Zone, Russia), Genomics Data, 2017, vol. 11, pp. 1–2.  https://doi.org/10.1016/j.gdata.2016.11.014 CrossRefGoogle Scholar
  34. 34.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning. A Laboratory Manual, New York: Cold Spring Harbor, 1989, vol. 2.Google Scholar
  35. 35.
    Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Kolganova, T.V., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 2069–2073.CrossRefGoogle Scholar
  36. 36.
    Spanevello, M.D. and Patel, B.K.C., Thermaerobacter, in Bergey’s Manual of Systematics of Archaea and Bacteria, Whitman, W.B., Ed., Wiley, 2015.  https://doi.org/10.1002/9781118960608.gbm00730
  37. 37.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.CrossRefGoogle Scholar
  38. 38.
    Van Rensbergen, P., De Batist, M., Klerkx, J., Hus, R., Poort, J., Vanneste, M., Granin, N., Khlystov, O., and Krinitsky, P., Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal, Geology, 2002, vol. 30, pp. 631–634.CrossRefGoogle Scholar
  39. 39.
    Verbolov, V.I., Currents and water exchange in Lake Baikal, Water Res., 1996, vol. 23, no. 4, pp. 381–391.Google Scholar
  40. 40.
    Volpi, M., Lomstein, B.A, Sichert, A., Roy, H., Jorgensen, B.B., and Kjeldsen, K.U., Identity, abundance, and reactivation kinetics of thermophilic fermentative endospores in cold marine sediment and seawater, Front. Microbiol., 2017, vol. 8, p. 131.  https://doi.org/10.3389/fmicb.2017.00131 CrossRefGoogle Scholar
  41. 41.
    Yu, Z., Wu, C., Yang, G.Q., and Zhou, S.G., Planifilum caeni sp. nov., a novel member of Thermoactinomycete isolated from sludge compost, Curr. Microbiol., 2015, vol. 70, pp. 135–140.CrossRefGoogle Scholar
  42. 42.
    Zhilina, T.N., Kevbrin, V.V., Tourova, T.P., Lysenko, A.M., Kostrikina, N.A., and Zavarzin, G.A., Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal Region, Microbiology (Moscow), 2005, vol. 74, pp. 557–566.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. N. Pavlova
    • 1
    Email author
  • A. V. Lomakina
    • 1
  • A. S. Novikova
    • 1
  • S. M. Chernitsyna
    • 1
  • T. A. Khanaeva
    • 1
  • T. V. Pogodaeva
    • 1
  • A. V. Khabuev
    • 1
  • T. I. Zemskaya
    • 1
  1. 1.Limnological Institute, Siberian Branch, Russian Academy of SciencesIrkutskRussia

Personalised recommendations