Skip to main content
Log in

Phage Particles in Ground Arctic Ice

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This is the first report on investigation of bacteriophages in ancient Arctic ground ice of various genesis and geological age. Electron microscopy revealed phage particles in all ice samples. Tailed bacteriophages were the dominant morphotype. A correlation was found between abundances of intact microbial cells and phage particles. Direct microscopic counts revealed the highest phage abundance melted native samples of ice wedge. Dependence of occurrence and abundance of phage particles on genesis of ground ice was observed. The phages, as an integral component of microbial communities, were found to be preserved in extreme low-temperature conditions of ground ancient ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Belova, N.G., Plastovye l’dy yugo-zapadnogo poberez’ya Karskogo morya (Bedded Ice of the Kara Sea Southwestern Coast), Moscow: MAKS, 2014.

  2. Biryuzova, V.I., Borovyagin, V.L., Gilev, V.P., Kiselev, M.A., Tikhonenko, A.S., and Chentsov, Yu.S., Elektronno-mikroskopicheskie metody issledovaniya biologicheskikh ob’ektov (Electron Microscopic Techniques for Investigation of Biological Objects), Frank, G.M., Ed., Moscow: AN SSSR, 1963.

    Google Scholar 

  3. Borriss, M., Helmke, E., Hanschke R., and Schweder, T., Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice, Extremophiles, 2003, vol. 7, pp. 377‒384.

    Article  CAS  Google Scholar 

  4. Brouchkov, A., Kabilov, M., Filippova, S., Baturina, O., Rogov, V., Galchenko, V., Mulyukin, A., Fursova, O., and Pogorelko, G., Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia), Gene, 2017, vol. 636, pp. 48‒53.

    Article  CAS  PubMed  Google Scholar 

  5. Colangelo-Lillis, J., Eicken, H., Carpenter, S.D., and Deming, J.W., Evidence for marine origin and microbial-viral habitability of sub-zero hypersaline aqueous inclusions within permafrost near Barrow Alaska, FEMS Microbiol. Ecol., 2016, vol. 92. fiw053. https://doi.org/10.1093/femsec/fiw053

    Article  CAS  PubMed  Google Scholar 

  6. Filippova, S.N., Surgucheva, N.A., Sorokin, V.V., Akimov, V.N., Karnysheva, E.A., Brushkov, A.V., Andersen, D., and Gal’chenko, V.F., Bacteriophages in Arctic and Antarctic low-temperature systems, Microbiology (Moscow), 2016, vol. 3, pp. 359‒367.

    Article  CAS  Google Scholar 

  7. Harvey, R.W. and Ryan, J.N., Use of PRD1 bacteriophage in groundwater viral transport, inactivation and attachment studies, FEMS Microbiol. Ecol., 2004, vol. 49, pp. 3‒16.

    Article  CAS  PubMed  Google Scholar 

  8. Katayama, T., Tanaka, M., Moriizumi, J., Nakamura, T., Brouchkov, A., Douglas, T.A., Fukuda, M., Tomita, F., and Asano, K., Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25000 years, Appl. Environ. Microbiol., 2007, vol. 73, pp. 2360‒2363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurchatova, A.N. and Rogov, V.V., Buried ice as a habitat for microorganisms, Materialy 4-oi konferentsii geokriologov Rossii (Materials of the 4th Conference of Russian Geocryologists), Moscow: Univ. Kniga, 2011, pp. 345‒350.

  10. Lacelle, D., Radtke, K., Clark, J.D., Fisher, D., Lauriol, B., Utting, N., and Whyte, L.G., Geomicrobiology and occluded O2‒CO2‒Ar gas analyses provide evidence of microbial respiration in ancient terrestrial ground ice, Earth Planet Sci. Lett., 2011, vol. 306, pp. 46‒54.

    Article  CAS  Google Scholar 

  11. Lavysh, D., Sokolova, M., Minakhin, L., Yakunina, M., Artamonova, T., Kozyavkin, S., Makarova, K., Koonin, E., and Severinov, K., The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases, Virology, 2016, vol. 495, pp. 185‒196.

    Article  CAS  PubMed  Google Scholar 

  12. Lein, A.Yu., Leibman, M.O., Savvichev, A.S., Miller, Yu.M., and Pimenov, N.V., Isotopic and biogeochemical characteristics of tabular ground ice on the Yugorskii and Yamal peninsulas, Geochem. Int., 2003, vol. 41, pp. 993‒1012.

    Google Scholar 

  13. Maranger, R., Bird, DF., and Juniper, S.K., Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada, Mar. Ecol. Prog., 1994, Ser. 111, pp. 121‒127.

    Google Scholar 

  14. Paul, J.H., Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?, ISME J., 2008, vol. 2, pp. 579‒589.

    Article  CAS  PubMed  Google Scholar 

  15. Säwström, C., Lisle, J., Anesio, A.M., Priscu, J.C., and Layborn-Parry, J., Bacteriophage in polar inland waters, Extremophiles, 2008, vol. 12, pp. 167‒175.

    Article  PubMed  Google Scholar 

  16. Steward, G.F., Wikner, J., Cochlan, W.P., Smith, D.C., and Azam, F., Estimation of virus production in the sea, Mar. Microb. Food Nets, 1992, vol. 6, pp. 79‒90.

    Google Scholar 

  17. Vasil’chuk, Yu.K., Budantseva, N.A., Vasil’chuk, A.K., Yoshikawa, K., Podbornyi, E.E., and Chizhova, Yu.N., Isotopic composition of the ice nucleus of Late Holocene bulguniyakh at the Pestsovoe deposit, Evoyakha valley, southern Taz Peninsula, Kriosfera Zemli, 2014, vol. 18, no. 1, pp. 47‒58.

    Google Scholar 

  18. Vasilchuk, Y.K., Kim, J.-Ch., and Vasilchuk, A.C., AMS14C dating and stable isotope plots of Late Pleistocene ice-wedge, Nucl. Instr. Meth. Phys. Res. B, 2004, vols. 223−224, pp. 650‒654. https://doi.org/10.1016/j.nimb.2004.04.120

  19. Weinbauer, M.G. and Peduzzi, P. Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes, Marine Ecol. Progr. Ser., 1994, vol. 108, pp. 11‒20.

    Article  Google Scholar 

  20. Wiggins, B.A. and Alexander, M., Minimum bacterial density for bacteriophage replication: implication for significance of bacteriophages in natural ecosystems, Appl. Environ. Microbiol., 1985, vol. 49, pp. 19‒23.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilhelm, R.C., Radtke, K.J., Mykytszuk, N.C.S., Greer, C.W., and Whyte, L.G., Life at the wedge: the activity and diversity of arctic ice wedge microbial communities, Astrobiology, 2012, vol. 12, pp. 347‒360.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLWDGMENTS

The work was partially supported by the Russian Foundation for Basic Research, project no. 16-05-00296 and the State Task no. 0104-2018-0029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Surgucheva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surgucheva, N.A., Filippova, S.N., Kulikov, E.E. et al. Phage Particles in Ground Arctic Ice. Microbiology 88, 206–211 (2019). https://doi.org/10.1134/S0026261719020164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719020164

Keywords:

Navigation