Skip to main content
Log in

Chitosan in Biology, Microbiology, Medicine, and Agriculture

  • MINI-REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The mini-review deals with the recent developments in investigation and application of chitosan and its derivatives within a broad range of human activities. A short historical note on discovery of chitin and chitosan is provided. Special attention is paid to chitosan occurrence and structure, as well as to antimicrobial properties of this biopolymer and their dependence upon the physicochemical characteristics of chitosan: its molecular mass and deacetylation degree, and the conditions of derivative formation. The possible mechanisms of chitosan biological activity are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aktuganov, G.E., Safina, V.R., Galimzianova, N.F., Kuz’mina, L.Yu., Gilvanova, E.A., Boyko, T.F., and Melent’ev, A.I., Chitosan resistance of bacteria and micromycetes differing in ability to produce extracellular chitinases and chitosanases, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 716–724.

    Article  CAS  Google Scholar 

  2. Blagodatskikh, I.V., Kulikov, S.N., Vyshivannaya, O.V., Bezrodnykh, E.A., and Tikhonov, V.E., N-Reacetylated oligochitosan: pH dependence of self-assembly properties and antibacterial activity, Biomacromolecules, 2017, vol. 18, pp. 1491–1498. doi 10.1021/acs.biomac.7b00039

    Article  PubMed  CAS  Google Scholar 

  3. Blagodatskikh, I.V., Vyshivannaya, O.V., Alexandro-va, A.V., Bezrodnykh, E.A., Zelenikhin, P.V., Kulikov, S.N., and Tikhonov, V.E., Antibacterial activity and cytotoxicity of betainated oligochitosane derivatives, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 725–731.

    Article  CAS  Google Scholar 

  4. Chang, S.H., Lin, H.T., Wu, G.J., and Tsai, G.J., pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan, Carbohydr. Polym., 2015, vol. 134, pp. 74–81. doi 10.1016/j.carbpol.2015.07.072

    Article  PubMed  CAS  Google Scholar 

  5. Dragland, I.S., Rukke, H.V., Stenhagen, I.S., Lönn-Stensrud, J., and Kopperud, H.M., Antibacterial and antibiofilm effect of low viscosity chitosan against Staphylococcus epidermidis, Int. J. Microbiol., 2016. Article ID 9159761. doi 10.1155/2016/9159761

  6. Dutta, P.K., Tripathi, S., Mehrotra, G.K., and Dutta, J., Perspectives for chitosan based antimicrobial films in food applications, Food Chem., 2009, vol. 114, pp. 1173–1182. doi 10.1016/j.foodchem.2008.11.047

    Article  CAS  Google Scholar 

  7. Feofilova, E.P., Fungal chitin: occurrence, biosynthesis, physicochemical properties, and prospects of application in Khitin i khitozan. Poluchenie, svoistva, primenenie (Chitin and Chitosan. Production, Properties, and Application), Skryabin, K.G., Vikhoreve, G.A., and Varlamov, V.P., Eds., Moscow: Nauka, 2002b, pp. 101–111.

    Google Scholar 

  8. Feofilova, E.P., Key role of chitin in formation of the fungal cell wall, in Khitin i khitozan. Poluchenie, svoistva, primenenie (Chitin and Chitosan. Production, Properties, and Application), Skryabin, K.G., Vikhoreve, G.A., and Varlamov, V.P., Eds., Moscow: Nauka, 2002a, pp. 79–100.

    Google Scholar 

  9. Gegel’, N.O., Zudina, I.V., Malinkina, O.N., and Shipovskaya, A.B., Effect of ascorbic acid isomeric forms on antibacterial activity of its chitosan salts, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 732–737.

    Article  Google Scholar 

  10. Glinel, K., Thebault, P., Humblot, V., Pradier, C.M., and Jouenne, T., Antibacterial surfaces developed from bio-inspired approaches, Acta Biomater., 2012, vol. 8, pp. 1670–1684. doi 10.1016/j.actbio.2012.01.011

    Article  PubMed  CAS  Google Scholar 

  11. Goy, R.C., de Britto, D., and Assis, O.B.G., A review of the antimicrobial activity of chitosan, Polímeros, 2009, vol. 19, pp. 241–247. http://dx.doi.org/. doi 10.1590/S0104-14282009000300013

    Article  CAS  Google Scholar 

  12. Il’ina, A.V. and Varlamov, V.P., In vitro antitumor activity of heterochitooligosaccharides (review), Appl. Biochem. Microbiol., 2015, vol. 51, pp. 1–10.

    Article  Google Scholar 

  13. Il’ina, A.V. and Varlamov, V.P., Neutralization of reactive oxygen species by chitosan and its derivatives in vitro/in vivo (review), Appl. Biochem. Microbiol., 2016, vol. 52, pp. 1–14.

    Article  Google Scholar 

  14. Il’ina, A.V., Shagdarova, B.Ts., Lun’kov, A.P., Varla-mov, V.P., and Kulikov, S.N., In vitro antifungal activity of metal complexes of a quaternized chitosan derivative with copper ions, Microbiology (Moscow), 2017, vol. 86, pp. 590–595.

    Article  Google Scholar 

  15. Junter, G.A., Thébault, P., and Lebrun, L., Polysaccharide-based antibiofilm surfaces, Acta Biomater., 2016, vol. 30, pp. 13–25. doi 10.1016/j.actbio.2015.11.010

    Article  PubMed  CAS  Google Scholar 

  16. Karimi, K. and Zamani, A., Mucor indicus: Biology and industrial application perspectives: a review, Biotechnol. Adv., 2013, vol. 31, pp. 466–481.

    Article  PubMed  CAS  Google Scholar 

  17. Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Center Bioeng., Russ. Acad. Sci., 2013.

    Google Scholar 

  18. Kulikov, S.N. and Khairullin, R.Z., Mechanism of action and role of the chemical structure in antibacterial and antimycotic activity of chitosan, in Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Center Bioeng., Russ. Acad. Sci., 2013, pp. 363–407.

    Google Scholar 

  19. Kulikov, S.N., Lisovskaya, S.A., Zelenikhin, P.V., Bezrodnykh, E.A., Shakirova, D.R., Blagodatskikh, I.V., and Tikhonov, V.E., Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship, Eur. J. Med. Chem., 2014, vol. 74, pp. 169–178. doi 10.1016/j.ejmech.2013.12.017

    Article  PubMed  CAS  Google Scholar 

  20. Kumar, M.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., and Domb, A.J., Chitosan chemistry and pharmaceutical perspectives, Chem. Revs., 2004, vol. 104, pp. 6017–6084.

    Article  Google Scholar 

  21. Kuprina, E., Kirillov, A.I., Ishevski, A.L., and Murashev, S.V., Food supplement based on chitin with enhanced lipid-lowering and sorption properties, Progr. Chem. Appl. Chitin Its Deriv., 2015, vol. 20, pp. 156–161.

    Google Scholar 

  22. Li, J., Wu, Y., and Zhao, L., Antibacterial activity and mechanism of chitosan with ultra high molecular weight, Carbohydr. Polym., 2016, vol. 148, pp. 200–205. doi 10.1016/j.carbpol.2016.04.025

    Article  PubMed  CAS  Google Scholar 

  23. Mellegård, H., Strand, S.P., Christensen, B.E., Gra-num, P.E., and Hardy, S.P., Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism, Int. J. Food Microbiol., 2011, vol. 148, pp. 48–54. doi 10.1016/j.ijfoodmicro.2011.04.023

    Article  PubMed  Google Scholar 

  24. Muzzarelli, R.A.A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., and Paoletti, M.G., Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial, Carbohydr. Polym., 2012, vol. 87, pp. 995–1012.

    Article  CAS  Google Scholar 

  25. Mysyakina, I.S., Bokareva, D.A., Usov, A.I., and Feofilova, E.P., Differences in the carbohydrate composition between the yeastlike and mycelial cells of Mucor hiemalis, Microbiology (Moscow). 2012, vol. 81, pp. 405–408.

    Article  CAS  Google Scholar 

  26. Nemtsev, S.V., Kompleksnaya technologiya khitina i khitozana iz pantsyrya rakoobraznykh (Aggregate Technology of Chitin and Chitosan from Crustacean Shells), Moscow: VNIRO, 2006.

    Google Scholar 

  27. Nemtsev, S.V., Zueva, O.Yu., Khismatullin, M.R., Albulov, A.I., and Varlamov, V.P., Isolation of chitin and chitosan from honeybees, Appl. Biochem. Microbiol., 2004, vol. 40, pp. 39–43.

    Article  CAS  Google Scholar 

  28. Oliveira, W.F., Silva, P.M.S., Silva, R.C.S., Silva, G.M.M., Machado, G., Coelho, L.C.B.B., and Correia, M.T.S., Staphylococcus aureus and Staphylococcus epidermidis infections on implants, J. Hosp. Infect., 2018, vol. 98, pp. 111–117. doi 10.1016/j.jhin.2017.11.008

    Article  PubMed  CAS  Google Scholar 

  29. Paolicelli, P., de la Fuente, M., Sánchez, A., Seijo, B., and Alonso, M.J., Chitosan nanoparticles for drug delivery to the eye, Expert Opin. Drug Deliv., 2009, vol. 6, pp. 239–253.

    Article  PubMed  CAS  Google Scholar 

  30. Popova, E.V., Domnina, N.S., Kovalenko, N.M., Borisova, E.A., Kolesnikov, L.E., and Tyuterev, S.L., Biological activity of chitosan with different molecular mass, Vestn. Zashch. Rast., 2017, no. 3 (93), pp. 28–33.

  31. Roberts, G.A., Thirty years of progress in chitin and chitosan, Progr. Chem. Appl. Chitin Its Deriv., 2008, vol. 13, pp. 7–15.

    Google Scholar 

  32. Rouget, C., Substances amylacées dans les tissus des animaux, spécialement des articulés (chitine). Compt. Rend., 1859, vol. 48, pp. 792–795.

    Google Scholar 

  33. Saltykova, E.S., Gaifullina, L.R., Kaskinova, M.D., Gataullin, A.R., Matniyazov, R.T., Poskryakov, A.V., and Nikolenko, A.G., Effect of chitosan on development of Nosema apis microsporidia in honey bees, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 738–743.

    Article  CAS  Google Scholar 

  34. Sankov, V., Shagdarova, B., Varlamov, V., Esipov, R., Sand virshchevskaya, E., Large size DNA in vitro and in vivo delivery using chitosan transfection, Progr. Chem. Appl. Chitin Its Deriv., 2017, vol. 22, pp. 190–200.

    Google Scholar 

  35. Shagdarova, B.Ts., Ilyina, A.V., Lopatin, S.A., Kartashov, M.I., Arslanova, L.R., Dzhavakhiya, V.G., and Varlamov, V.P., Study of the protective activity of chitosan hydrolyzate against septoria leaf blotch of wheat and brown spot of tobacco, Appl. Biochem. Microbiol., 2018, vol. 54, pp. 68–73.

    Article  Google Scholar 

  36. Silva, L.P., Britto, D., Seleghim, M.H.R., and Assis, O.B.G., In vitro activity of water-soluble quaternary chitosan chloride salt against E. coli, World J. Microbiol. Biotechnol., 2010, vol. 26, pp. 2089–2092.

    Article  Google Scholar 

  37. Tereshina, V.M., Memorskaya, A.S., Feofilova, E.P., Nemtsev, D.V., and Kozlov, V.M., Isolation of polysaccharide complexes from mycelial fungi and determination of their deacetylation degree, Microbiology (Moscow). 1997, vol. 66, pp. 84–89.

    Google Scholar 

  38. Tsigos, I., Zydowicz, N., Martinou, A., Domard, A., and Bouriotis, V., Mode of action of chitin deacetylase from Mucor rouxii on partially N-acetylated chitosans, Eur. J. Biochem., 1999, vol. 261, pp. 698–705.

    Article  PubMed  CAS  Google Scholar 

  39. Vasilev, K., Cook, J., and Griesser, H.J., Antibacterial surfaces for biomedical devices, Expert Rev. Med. Devices, 2009, vol. 6, pp. 553–567. doi 10.1586/erd.09.36

    Article  PubMed  Google Scholar 

  40. Xia, W., Liu, P., Zhang, J., and Chen, J., Biological activities of chitosan and chitooligosaccharides, Food Hydrocolloids, 2011, vol. 25, pp. 170–179.

    Article  CAS  Google Scholar 

  41. Younes, I. and Rinaudo, M., Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mur. Drugs, 2015, vol. 13, pp. 1133–1174.

    Article  CAS  Google Scholar 

  42. Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., and Nasri, M., Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities, Int. J. Food Microbiol., 2014, vol. 185, pp. 57–63. doi 10.1016/j.ijfoodmicro.2014.04.029

    Article  PubMed  CAS  Google Scholar 

  43. Zubareva, A., Shagdarova, B., Varlamov, V., Kashirina, E., and Svirshchevskaya, E., Penetration and toxicity of chitosan and its derivatives, Eur. Polymer J., 2017, vol. 93, pp. 743–749.

    Article  CAS  Google Scholar 

  44. Zubareva, A.A., Shcherbinina, T.S., Varlamov, V.P., and Svirshchevskaya, E.V., Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles, Nanoscale, 2015, vol. 7, pp. 7942–7962. doi 10.1039/c5nr00327

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The 14th International Conference “Current Prospects in Chitin and Chitosan Research” was prepared with support from the Russian Foundation for Basic Research, grant no. 18-04-20055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Varlamov.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlamov, V.P., Mysyakina, I.S. Chitosan in Biology, Microbiology, Medicine, and Agriculture. Microbiology 87, 712–715 (2018). https://doi.org/10.1134/S0026261718050168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718050168

Keywords:

Navigation