Skip to main content
Log in

Rapid biosynthesis of PVP coated silver nanoparticles by Kocuria rosea and their antimicrobial activity

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The need for more effective antimicrobial agent and propitious application of nanotechnology in therapeutics and diagnostics has prompted the research on ecofriendly synthesis of silver nanoparticles. The objective of present study was to investigate the antibacterial and antifungal activity of biologically synthesized silver nanoparticles. The silver nanoparticles were synthesized by extracellular method, using soil bacteria Kocuria rosea. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM) and fourier transformation infrared spectroscopy (FTIR). On the basis of TEM analysis, the synthesized nanoparticles were found to be spherical with an average size of 30–50 nm. The biologically synthesized silver nanoparticles showed significant antimicrobial activity against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., and Sastry, M., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Coll. Surf. B., 2003, vol. 28, pp. 313–318.

    Article  CAS  Google Scholar 

  • Ahmad, R., Minaeian, S., Shahverdi, H.R., Jamalifar, H., and Nohi, A., Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach, Process Biochem., 2007, vol. 42, pp. 919–923.

    Article  Google Scholar 

  • Baker, S. and Shreedharmurthy, S., Antimicrobial activity and biosynthesis of nanoparticles by endophytic bacterium inhabiting Coffee arabica L., Sci. J. Biol. Sci., 2012, vol. 1, pp. 107–113.

    Google Scholar 

  • Balaji, D., Basavaraja., S., Deshpande, S., Bedre, R., Mahesh, D., Prabhakar, B.K., and Venkataraman, A., Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides, Coll. Surf. B., 2009, vol. 68, pp. 88–92.

    Article  CAS  Google Scholar 

  • Bharde, A., Wani, A., Shouche, Y., Pattayil, A., Bhagavatula, L., and Sastry, M., Bacterial aerobic synthesis of nanocrystalline magnetite, J. Am. Chem. Soc., 2005, vol. 127, pp. 9326–9327.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Wang, L., Jiang, G., and Yu, H., Study on the synthesis of silver nanowires with adjustable diameters through the polyol process, Nanotechnol., 2006, vol. 11, pp. 3933–3938.

    Article  Google Scholar 

  • Chen, S.F., Li, J.P., Quin, K. and Xu, W.P., Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, Co oxidation performance and antibacterial effect, Nano Res., 2010, vol. 3, pp. 244–255.

    Article  CAS  Google Scholar 

  • Chudasama, B., Vala, A.V., Andharya, N., Upadhyay, R.V., and Mehta, R.V., Enhanced antibacterial activity of bifunctional Fe3O4 core-shell nanostructures, Nano Res., 2009, vol. 2, pp. 955–965.

    Article  CAS  Google Scholar 

  • Das, V.L., Thomas, R., Varghese, R.T., Soniya, E.V., Mathew, J., and Radhakrishnan, E.K., Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area, 3 Biotech, 2012, vol. 4, pp. 121–126.

    Article  Google Scholar 

  • Du, L., Jiang, H., Xiaohua, H., and Wang, E., Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of haemoglobin, Electrochem. Commun., 2007, vol. 9, pp. 1165–1170.

    Article  CAS  Google Scholar 

  • Fu, M.X., Li, Q.B., Sun, D.H., Lu, Y.H., He, N., Deng, X., Wang, H., and Huang, J., Rapid preparation process of silver nanoparticles by bioreduction and their characterizations, Chin. J. Chem. Eng., 2006, vol. 14, pp. 114–117.

    Article  CAS  Google Scholar 

  • Ganesh, B.M.M. and Gunasekaran, P., Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate, Coll. Surf. B., 2009, vol. 74, pp. 191–195.

    Article  Google Scholar 

  • Haefeli, C., Franklin, C., and Hardy, K., Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from silver mine, J. Bacteriol., 1984, vol. 158, pp. 389–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatchett, D.W. and Henry, S., Electrochemistry of sulfur adlayers on low-index faces of silver, J. Phys. Chem., 1996, vol. 100, pp. 9854–985.

    Article  CAS  Google Scholar 

  • Holt, K.B. and Bard, A.J., Interaction of silver ions with the respiratory chain of Escherichia coli an electrochemical and scanning electrochemical microscopy study of the antimi-crobial mechanism of micromolar Ag+, Biochem., 2005, vol. 44, pp. 13214–13223.

    Article  CAS  Google Scholar 

  • Jacobs, C. and Muller, R.H., Production and characterization of a budesonide nanosuspension for pulmonary administration, Pharmaceut. Res., 2002, vol. 19, 189–194.

    Article  CAS  Google Scholar 

  • Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J.C., and Panwar, J., Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective, Nanoscale., 2011, vol. 3, pp. 635–641.

    Article  CAS  PubMed  Google Scholar 

  • Jana, N.R., Sau, T.K., and Pal, T., Growing small silver particles as redox catalyst, J. Phys. Chem. B., 1999, vol. 103, pp. 115–121.

    Article  CAS  Google Scholar 

  • Kalimuthu, K., Babu, R.S., Venkataraman, D., Bilal, M., and Gurunathan, S., Biosynthesis of silver nanocrystals by Bacillus licheniformis, Coll. Surf. B., 2008, vol. 65, pp. 150–153.

    Article  CAS  Google Scholar 

  • Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., and Gurunathan, S., Biosynthesis of silver and gold nanoparticles using Brevibacterium casei, Coll Surf B., 2010, vol. 77, pp. 257–262.

    Article  CAS  Google Scholar 

  • Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., and Sangiliyandi, G., Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis, Mat. Lett., 2008, vol. 62, pp. 4411–4413.

    Article  CAS  Google Scholar 

  • Kim, J.S., Kuk, E., Yu, K., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., and Cho, M.H., Antimicrobial effects of silver nanoparticles, Nanomed., 2007, vol. 3, pp. 95–101.

    Article  CAS  Google Scholar 

  • Manna, A., Imae, T., Aoi, K., Okada, M., and Yogo, T., Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles, Chem. Mater., 2001, vol. 13, pp. 1674–1681.

    Article  CAS  Google Scholar 

  • Matsumura, Y., Yoshikata, K., Kunisaki, S., and Tsuchido, T., Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate, Appl. Environ. Microbiol., 2003, vol. 69, pp. 4278–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., and Yacaman, M.J., The bactericidal effect of silver nanoparticles, Nanotechnol., 2005, vol. 16, pp. 2346–2353.

    Article  CAS  Google Scholar 

  • Mouxing, F.U., Qingbiao, L.I., Daohua, S.U.N., Yinghua, L.U., Ning, H.E., Deng, X.U., Huixuan, W., and Jaile, H., Rapid preparation process of silver nanoparticles by bioreduction and their characterisation, Chinese J. Chem. Eng., 2006, vol. 14, pp. 114–117.

    Article  Google Scholar 

  • Nanda, A. and Saravanan, M., Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE, Nanomed., 2009, vol. 5, pp. 452–456.

    Article  CAS  Google Scholar 

  • Oves, M., Khan, M.S., Zaidi, A., Ahmed, A.S., Ahmed, F., Ahmad, E., Sherwani, A., Owais, M., and Azam, A., Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia, PLoS One., 2013, vol. 8: e59140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal, S., Tak, Y.K., and Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., 2007, vol. 73, pp. 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, C., Paul, M., and Bazerque, P., Antibiotic assay by agar well diffusion method, Acta Biol. Med. Exp., 1990, vol. 15, pp. 113–115.

    Google Scholar 

  • Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N.K.U., Crawford, S., and Ashokkumar, M., Microbial synthesis of silver nanoparticles by Bacillus sp., J. Nanopart. Res., 2009, vol. 11, pp. 1811–1815.

    Article  CAS  Google Scholar 

  • Rai, M., Yadav, A., and Gade, A., Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 2009, vol. 27, pp. 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Saifuddin, N., Wong, C.W., and Nur Yasumira, A.A., Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation, J. Chem., 2009, vol. 6, pp. 61–70.

    CAS  Google Scholar 

  • Saravanan, M., Vemu, A.K., and Barik, S.K., Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens, Coll. Surf B., 2011, vol. 88, pp. 325–331.

    Article  CAS  Google Scholar 

  • Sastry, M., Ahmad, A., Khan, M.I., and Kumar, R., Biosynthesis of metal nanoparticles using fungi and Actinomycete, Curr. Sci., 2003, vol. 85, pp. 162–170.

    CAS  Google Scholar 

  • Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., and Dash, D., Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnol., 2007, vol. 18, pp. 1–9.

    Article  Google Scholar 

  • Sonnichsen, C., Franzl, T., Wilk, T., Von, P.G., and Feldmann, J., Plasmon resonance in large noble-metal clusters, New J. Phys., 2002, vol. 4, pp. 931–938.

    Article  Google Scholar 

  • Stoimenov, P.K., Klinger, R.L., Marchin, G.L., and Klabunde, K.J., Metal oxide nanoparticles as bactericidal agents, Langmuir, 2000, vol. 18, pp. 6679–6686.

    Article  Google Scholar 

  • Sunkar, S. and Nachiyar, C.V., Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus, Asian Pac. J. Trop. Biomed., 2012, vol. 2, pp. 953–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Yu, J.C., Yip, H.Y., Li, Q., Kwong, K.W., Xu, A., and Wong, P.K., Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities, Langmuir, 2003, vol. 19, pp. 10372–10380.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bhatia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, D., Mittal, A. & Malik, D.K. Rapid biosynthesis of PVP coated silver nanoparticles by Kocuria rosea and their antimicrobial activity. Microbiology 86, 602–609 (2017). https://doi.org/10.1134/S0026261717050046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717050046

Keywords

Navigation