Skip to main content
Log in

Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian Amazon

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Metal nanoparticles are a promising approach for the development of new antimicrobial systems. Silver nanoparticles (AgNP) have a significant antibacterial activity through bacterial surface adsorption and oxidative stress induction, as indicated by recent observations. This research aimed to use endophytic fungi from the genus Trichoderma spp. isolated from the Bertholletia excelsa (Brazil-nut) seeds and the soil to biosynthesize AgNPs and also test their antibacterial activity. The use of these fungi for this purpose not only valorizes the Amazon biodiversity but it also uses cleaner and cheaper processes, being part of the Green Chemistry concept. The particles were analyzed through Ultraviolet–Visible Spectroscopy and ZetaSizer and the band of absorption at 420 nm was analyzed through Localized Surface Plasmon Resonance. After characterization, the AgNP were tested for antibacterial activity against several bacterial strains, when it was observed that their antibacterial activity was superior in Gram-negative bacteria.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelrahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE-ZMA, Husseiny SM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24:208–216

    Article  CAS  Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Suresh W (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod 55:202–206

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  Google Scholar 

  • Almeida ES (2017) Biossíntese e caracterização de nanopartículas de prata por fusarium oxysporum. Universidade Federal de Santa Catarina, Santa Catarina

    Google Scholar 

  • Ammar HS, El-Desouky TA (2016) Green syntehsis of nanosilver by Aspergillius terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 121:89–100

    Article  CAS  Google Scholar 

  • Balakrishnan RM (2014) Biosynthesis and optimization of silver nanoparticles by endophytic fungus Fusarium solani. Mater Lett 132:428–431

    Article  Google Scholar 

  • Bezerra AVA (2015) Síntese, caracterização de nanopartículas de prata e avaliação da atividade biocida em filmes de poliestireno. Universidade Federal de Santa Catarina, Florianópolis

    Google Scholar 

  • Birolli WG, Ferrreira IM, Jimenez DEQ, Silva BNM, Silva BV, Pinto AC, Porto ALM (2017) First asymmetric reduction of isatin by marine-derived fungi. J Braz Chem Soc 28:1023–1029

    CAS  Google Scholar 

  • Cardoso CO (2017) Avaliação da penetração da oxaliplatina na mucosa oral a partir de nanopartículas de quitosana. Universidade Federal de Brasília, Brasília

    Google Scholar 

  • Cavalcante BN (2014) Atividade antibacteriana e antifúngica de nanopartículas de prata produzidas por Curvularia inaequalis (Shear) Boedijn. Universidade do Vale do São Francisco, Petrolina

    Google Scholar 

  • Chen H, Mothapo NV, Shi W (2015) Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microb Ecol 69:180–191

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. ISBN 1-56238-783-9.

  • Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–799

    Article  Google Scholar 

  • Edwards B (2017) Silver nanoparticles: advances in research and applications. Nova Science Publishers Inc., Hauppauge

    Google Scholar 

  • Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AA-F, Bahkali AH (2016) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip 30:299–304

    Article  CAS  Google Scholar 

  • Ferreira IM, Meira EB, Rosset IG, Porto ALM (2015) Chemoselective biohydrogenation of α,β- and α,β,γ,δ-unsaturated ketones by the marine-derived fungus Penicillium citrinum CBMAI 1186 in a biphasic system. J Mol Catal B Enzym 115:59–65

    Article  CAS  Google Scholar 

  • Fox CL Jr, Modak SM (1974) Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother 5:582–588

    Article  CAS  Google Scholar 

  • Freitas LMC, Barbosa BCA, Rodrigues K, Marinho G (2017) Emprego de Aspergillus niger AN 400 em reatores de bancada para remover pesticida de matriz aquosa. Engenharia Sanitaria e Ambiental 22:1175–1185

    Article  Google Scholar 

  • Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Duran N (2013) Screening of different. J Braz Chem Soc 00:1–9

    Google Scholar 

  • Ghiuţă I, Cristea D, Munteanu D (2017) Synthesis methods of metallic nanoparticles: an overview. Bull Trans Univ Bras Series I 10:133–140

    Google Scholar 

  • Gupta A, Maynes M, Silver S (1988) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045

    Article  Google Scholar 

  • Hargreaves PI, Pereira Jr N (2008) Bioprospecção de novas celulases de fungos provenientes da floresta amazônica e otimização de sua produção sobre celulignina de bagaço de cana. Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Holanda FH, Birolli WG, Morais ES, Sena IS, Ferreira AM, Faustino SMM, Solon LCS, Porto ALM, Ferreira IM (2019) Study of biodegradation of chloramphenicol by endophytic fungi isolated from Bertholletia excelsa (Brazil nuts). Biocatal Agric Biotechnol 20:101200–101208

    Article  Google Scholar 

  • Ilaria A, Kenny J (2013) Silver nanoparticles: synthesis, uses and health concerns. Nova Science Publishers Inc., Hauppauge

    Google Scholar 

  • Kelly TJ, Lawson IT, Roucoux KH, Baker TR, Jones TD, Sanderson NK (2017) The vegetation history of an Amazonian domed peatland. Palaeogeogr Palaeoclimatol Palaeoecol 468:129–141

    Article  Google Scholar 

  • Ko S, Huh C (2019) Use of nanoparticles for oil production applications. J Petrol Sci Eng 172:97–114

    Article  CAS  Google Scholar 

  • Liu J, Jiang G (2015) Silver nanoparticles in the environment. Springer, Berlin

    Book  Google Scholar 

  • Marinho G, Freitas LMC, Barbosa BCA, Rodrigues KDA (2017) Employment of Aspergillus niger AN 400 in batch reactors to remove pesticide aqueous matrix. Eng San e Amb 22:1175–1185

    Google Scholar 

  • McShan D, Zhang Y, Deng H, Ray PC, Yu H (2015) Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J Env Sci and Health, Part C 33:369–384

    Article  CAS  Google Scholar 

  • Mikolajczyk A, Gajewicz A, Rasulev B, Schaeublin N, Maurer-Gardner E, Hussain S, Leszczynski J, Puzyn T (2015) Zeta potential for metal oxide nanoparticles: a predictive model developed by a nano-quantitative structure–property relationship approach. Chem Mater 27:2400–2407

    Article  CAS  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  Google Scholar 

  • Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Micro Pathog 116:263–272

    Article  CAS  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1:26–26

    Article  Google Scholar 

  • Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B 105:342–352

    Article  CAS  Google Scholar 

  • Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano rev 2:1–62

    Article  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy KS, Poinern EG (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601

    Article  CAS  Google Scholar 

  • Welles AE (2010) Silver nanoparticles: properties, characterization and applications. Nova Science Publishers, New York

    Google Scholar 

  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1–34

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Fundação de Amparo à Pesquisa do Estado do Amapá (FAPEAP, Grant No. 34568.515.22257.28052017) and the Structural Biology Laboratory of the Federal University of Pará (UFPA) by TEM analysis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irlon M. Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, M.M., dos S. Morais, E., da S. Sena, I. et al. Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian Amazon. Biotechnol Lett 42, 833–843 (2020). https://doi.org/10.1007/s10529-020-02819-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02819-y

Keywords

Navigation