Skip to main content
Log in

Proteomic analysis of sensitive and multi drug resistant Mycobacterium tuberculosis strains

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Multidrug-resistant tuberculosis (MDR-TB) is caused by bacteria that are resistant to the most effective anti TB drugs (Isoniazid and Rifampicin) with or without resistance to other drugs. Novel intervention strategies to eliminate this disease based on finding proteins can be used for designing new drugs or new and reliable kits for diagnosis. The aim of this study was to compare the protein profile of MDR-TB with sensitive isolates. Two-dimensional gel electrophoresis (2DE) along with mass spectrometry is a powerful and effective tool to identification and characterization of Mycobacterium tuberculosis. Two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for diagnosis and comparison of proteins. We identified 14 protein spots in MDR-TB isolates that 2DE analysis showed these spots absent in M. tuberculosis sensitive isolates (Rv1876, Rv0379, Rv0147, Rv2031c, Rv3597c, Rv1886c, MT0493, Rv0440, Rv3614c, Rv1626, Rv0443, Rv0475, Rv3057 and unknown protein. The results showed 22 protein spots which were up regulated (or expressed) by the MDR-TB isolates, (Rv1240, Rv3028c, Rv2971, Rv2114c, Rv3311, Rv3699, Rv1023, Rv1308, Rv3774, Rv0831c, Rv2890c, Rv1392, Rv0719, Rv0054, Rv3418c, Rv0462, Rv2215, Rv2986c, Rv3248c and Rv1908c)). Two up regulated protein spots were identified in sensitive isolate (Rv1133c and Rv0685). These data will provide valuable clues in further investigation for suitable TB rapid tests or drug targets against drug resistant and sensitive of M. tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, J.R., Gandhi, N.R., Moodley, P., Shah, N.S., Bohlken, L., Moll, A.P., Pillay, M., Friedland, G., and Sturm, A.W., Exogenous reinfection as a cause of multidrug-resistant and extensively drug-resistant tuberculosis in rural South Africa, J. Infect. Dis., 2008, vol. 198, pp. 1582–1589.

    Article  PubMed  Google Scholar 

  • Bassili, A., Fitzpatrick, Ch., Qadeer, E., Fatima, R., Floyd, K., and Jaramillo, E., Review article: a systematic review of the effectiveness of hospital and ambulatorybased management of multidrug-resistant tuberculosis, Am. J. Trop. Med. Hyg., 2013, vol. 89, no. 2, pp. 271–280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford, M.M., A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., and Devlin, K., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, 1998, vol. 393, pp. 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, M.J., Detection of total proteins on western blot of 2-D polyacrylamide gels, Methods Mol. Biol., 1999, vol. 112, pp. 319–329.

    CAS  PubMed  Google Scholar 

  • Eichacker, L.A., Granvogl, B., Mirus, O., Muller, B.C., Miess, C., and Schleiff, E., Hiding behind hydrophobicity, J. Biol. Chem., 2004, vol. 279, no. 49, pp. 50915–50922.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, N.R., Shah, N.S., Andrews, J.R., Vella, V., Moll, A.P, Scott, M., Weissman, D., Marra, C., Lalloo, U.G., and Friedland, G.H., HIV coinfection in multidrug- and extensively drug-resistant tuberculosis results in high early mortality, Am. J. Respir. Crit. Care Med., 2010, vol. 181, pp. 80–86.

    Article  PubMed  Google Scholar 

  • Malen, H., De Souza, G.A., Pathak, Sh., Softeland, T., and Wiker, H.G., Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains, BMC Microbiol., 2011, vol. 11, no. 18, pp. 1–10.

    Google Scholar 

  • Griffin, J.E., Gawronski, J.D., Dejesus, M.A., Ioerger, T.R., Akerley, B.J., and Sassetti, C.M., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism, PLoS Pathog., 2011, vol. 7, p. 9.

    Google Scholar 

  • Jiang, X., Zhang, W., Gao, F., and Wang, H., Comparison of the proteome of isoniazid-resistant and susceptible strains of Mycobacterium tuberculosis, Microb. Drug Resist., 2006, vol. 12, no. 4, pp. 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Krogh, A., Larsson, B.G., and Von Heijae, G., Predicting transmembrane protein topology with Hidden Markov model: application to complete genomes, J. Mol. Biol., 2001, vol. 305, pp. 567–580.

    Article  CAS  PubMed  Google Scholar 

  • Luetkemeyer, A.F., Getahun, H., Chamie, G., and Lienhardt, C.H., Drug development ensuring people living with HIV are not left behind, Am. J. Respir. Crit. Care Med., 2011, vol. 184, pp. 1107–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malen, H., Pathak, S., Softeland, T., de Souza, G.A., and Wiker, H.G., Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv, BMC Microbiol., 2010, vol. 10, pp. 132–142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattow, J., Siejak, F., Hagens, K., Becher, D., Albrecht, D., Krah, A., Schmidt, F., Jungblut, P.R., Kaufmann, Sh., and Schaible, U.E., Proteins unique to intraphagosomally grown Mycobacterium tuberculosis, Proteomics, 2006, vol. 6, no. 8, pp. 2485–2494.

    Article  CAS  PubMed  Google Scholar 

  • Meghji, S., White, P.A., Nair, S.P., Reddi, K., Heron, K., Henderson, B., Zaliani, A., Fossati, G., Mascagni, P., Hunt, J.F., Roberts, M.M., and Coates, A.R., Mycobacterium tuberculosis chaperonin 10 stimulates bone resorption: a potential contributory factor in Pott’s disease, J. Exp Med., 1997, vol. 186, no. 8, pp. 1241–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moloy, M.P., Gradients two-dimensional electrophoresis of membrane proteins using immobilized PH, Anal. Biochem., 2000, vol. 280, pp. 1–10.

    Article  Google Scholar 

  • Nathanson, E., Lambregts-van Weezenbeek, C., Rich, M.L., Gupta, R., Bayona, J., Blondal, K., Caminero, J.A., Cegielski, J.P., Danilovits, M., and Espinal, M.A., Multidrug-resistant tuberculosis management in resource-limited settings, Emerg. Infect. Dis., 2006, vol. 12, pp. 1389–1397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neelja, S., Prashant, Sh., Kumar, M., Joshi, B., and Bisht, D., Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates, Proteome Sci., 2012, vol. 10, p. 14.

    Article  Google Scholar 

  • Sharma, P. and Bhavensh, K., Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis, Proteome Sci., 2010, vol. 8, p. 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchenko, A., Wilm, M., Vorm, O., and Mann, M., Mass spectrometric sequencing of proteins from silverstained polyacrylamide gels, Anal. Chem., 1996, vol. 68, p. 850–858.

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko, A., Henrik, T., Jan, H., Jesper, V.O., and Matthias, M., In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protocol., 2006, vol. 1, no. 6, pp. 2856–2860.

    Article  CAS  Google Scholar 

  • Rengarajan, J., Bloom, B. R., and Rubin, E.J., Genomewide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 8327–8332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkrands, I., King, A., Weldingh, K., Moniatte, M., Moertz, E., and Andersen, P., Towards the proteome of Mycobacterium tuberculosis, Electrophoresis, 2000, vol. 21, no. 17, pp. 3740–3756.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization: Global Tuberculosis Report 2014, WHO/HTM/TB/2014.08 WHO. http://wwwwhoint/tb/publications/globalreport/en/

  • Yanmin, Hu., Geize, R., Besra, G.S., Gurcha, S.S., Liu, A., Rohde, M., Singh, M., and Coates, A., 3-Ketosteroid 9a-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis, Mol. Microbiol., 2010, vol. 75, no. 1, pp. 107–121.

    Article  Google Scholar 

  • Zvi, A., Ariel, N., Fulkerson, J., Sadoff, J. C., and Shafferman, A., Whole genomic identification of bioinformatic analyses, BMC Med. Genomics, 2008, vol. 1, p. 18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Bahrmand.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, S., Tasbiti, A.H., Ghanei, M. et al. Proteomic analysis of sensitive and multi drug resistant Mycobacterium tuberculosis strains. Microbiology 85, 350–358 (2016). https://doi.org/10.1134/S0026261716030164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716030164

Keywords

Navigation