Skip to main content
Log in

Comparative sensitivity of the luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis strains to toxic effects of carbon-based nanomaterials and metal nanoparticles

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A comparative analysis of the four commercially available and laboratory luminescent sensor strains to the toxic effect of 10 carbon-based nanomaterials (CBNs) and 10 metal nanoparticles (MNPs) was carried out in this study. The bioluminescence inhibition assays with marine Photobacterium phosphoreum and recombinant Escherichia coli strains were varied in minimal toxic concentrations and EC50 values but led to well-correlated biotoxicity evaluation for the most active compounds, which were ranked as Cu > (MgO, CuO) > (fullerenol, graphene oxide). The novel sensor strain Bacillus subtilis EG168-1 exhibited the highest sensitivity to CBNs and MNPs, which increased significantly the number of toxic compounds causing the bacterial bioluminescence inhibition effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhavan, O. and Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 2010, vol. 4, no. 10, pp. 5731–5736.

    Article  CAS  PubMed  Google Scholar 

  • Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., Habib,S.S., and Memic, A., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int. J. Nanomed., 2012, vol. 7, pp. 6003–6009.

    Article  CAS  Google Scholar 

  • Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., and Hazan, R., Alternative antimicrobial approach: nano-antimicrobial materials, Evid. Based Complement. Alternat. Med., 2015. doi: 10.1155/2015/246012

    Google Scholar 

  • Chatterjee, A.K., Chakraborty, R., and Basu, T., Mechanism of antibacterial activity of copper nanoparticles, Nanotechnology, 2014, vol. 25, no. 13. doi 10.1088/0957-4484/25/13/135101

    Google Scholar 

  • Chen, K.L. and Elimelech, M., Aggregation and fate of fullerene nanoparticles in aquatic environments, Nanotech., 2006, vol. 1, pp. 603–604.

    CAS  Google Scholar 

  • Deryabin, D.G., Bakterial’naya bioluminestsentsiya: fundamental’nye i prikladnye aspekty (Bacterial Bioluminescence: Basic and Applied Aspects), Moscow: Nauka, 2009.

    Google Scholar 

  • Deryabin, D.G., Vasilchenko, A.S., Aleshina, E.S., Tlyagulova, A.S., and Nikiyan, H.N., An investigation into the interaction between carbon-based nanomaterials and Escherichia coli cells using atomic force microscopy, Nanotechnologies in Russia, 2010, vol. 5, nos. 11–12, pp. 857–863.

    Article  Google Scholar 

  • Deryabin, D.G., Aleshina, E.S., and Tlyagulova, A.S., Acute toxicity of carbon-based nanomaterials to Escherichia coli is partially dependent on the presence of process impurities, Nanotechnologies in Russia, 2011, vol. 6, nos. 7–8, pp. 528–534.

    Article  Google Scholar 

  • Deryabin, D.G., Aleshina, E.S., and Efremova, L.V., Application of the inhibition of bacterial bioluminescence test for assessment of toxicity of carbon-based nanomaterials, Microbiology (Moscow), 2012, vol. 81, no. 4, pp. 492–497.

    Article  CAS  Google Scholar 

  • Deryabin, D.G., Aleshina, E.S., Vasilchenko, A.S., Efremova, L.V., and Klokova, O.S., Toxicity of carbon-based nanomaterials against Escherichia coli depends on dispersion efficacy of their water suspensions, Nanotechnologies in Russia, 2013, vol. 8, nos. 7–8, pp. 565–572.

    Article  Google Scholar 

  • Deryabin, D.G., Aleshina, E.S., Vasilchenko, A.S., Deryabina, T.D., Efremova, L.V., Karimov, I.F., and Korolevskaya, L.B., Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains, Nanotechnologies in Russia, 2013, vol. 8, nos. 5–6. pp. 402–408.

    Article  Google Scholar 

  • Francis, K.P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M.J., Xiao, G., Purchio, T.F., Caparon, M.G., Lipsitch, M., and Contag, P.R., Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel grampositive lux transposon, Infect. Immun., 2001, vol. 69, no. 5, pp. 3350–3358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girotti, S., Ferri, E.N., Fumo, M.G., and Maiolini, E., Monitoring of environmental pollutants by bioluminescent bacteria, Anal. Chim. Acta, 2008, vol. 608, no. 1, pp. 2–29.

    Article  CAS  PubMed  Google Scholar 

  • Globally Harmonized System of Classification and Labelling of Chemicals (GHS), ST/SG/AC.10/30/Rev.5, New York: UN, 2013.

  • Gusev, A.A., Fedorova, I.A., Tkachev, A.G., Godymchuk, A.Y., Kuznetsov, D.V., and Polyakova, I.A., Acute toxic and cytogenetic effects of carbon nanotubes on aquatic organisms and bacteria, Nanotechnologies in Russia, 2012, vol. 7, nos. 9–10, pp. 509–516.

    Article  Google Scholar 

  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., and Kahru, A., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 2008, vol. 71, no. 7, pp. 1308–1316.

    Article  CAS  PubMed  Google Scholar 

  • Ivask, A., Bondarenko, O., Jepihhina, N., and Kahru, A., Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals, Anal. Bioanal. Chem., 2010, vol. 398, no. 2, pp. 701–716.

    Article  CAS  PubMed  Google Scholar 

  • Jin, T. and He, Y., Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens, J. Nanopart. Res., 2011, vol. 13, no. 12, pp. 6877–6885.

    Article  CAS  Google Scholar 

  • Kang, S., Mauter, M.S., and Elimelech, M., Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environ. Sci. Technol., 2009, vol. 43, no. 7, pp. 2648–2653.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov, A.M., Rodicheva, E.K., Medvedeva, S.E., and Gitelson, J.I., Bioluminescent bioassays based on luminous bacteria marker system, in Biolum & Chemilum: Progress & Current Application, London, 2002, pp. 323–326.

    Google Scholar 

  • Lyon, D.Y., Brown, D.A., and Alvarez, P.J., Implications and potential applications of bactericidal fullerene water suspensions: effect of nC(60) concentration, exposure conditions and shelf life, Water Sci. Technol., 2008, vol. 57, no. 10, pp. 1533–1538.

    Article  CAS  PubMed  Google Scholar 

  • Manukhov, I.V., Rastorguev, S.M., Eroshnikov, G.E., Zarubina, A.P., and Zavil’gel’skii, G.B., Cloning and expression of the lux operon of Photorhabdus luminescens, strain Zm1: nucleotide sequence of luxAB genes and basic properties of luciferase, Russ. J. Genet., 2000, vol. 36, no. 3, pp. 249–257.

    CAS  Google Scholar 

  • Metodicheskie ukazaniya po razrabotke normativov kachestva vody vodnykh ob”ektov rybokhozyaistvennogo znacheniya, v tom chisle normativov predel’nj dopuctimykh knotsentratsii beshchestv v vodakh vodnykh ob”ektov rybokhozyaistvennogo znacheniya14702 (Methodical Recommendations of Development of the Standards for Water Quality in Fishery Water Objects, Including the Standards for Maximum Allowable Concentrations of Compounds in the Water of Fishery Water Objects no. 14702), Moscow: Federal Fishery Agency, 2009.

  • Mortimer, M., Kasemets, K., Heinlaan, M., Kurvet, I., and Kahru, A., High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles, Toxicol. in Vitro., 2008, vol. 22, no. 5, pp. 1412–1417. Plasmotherm, Moscow, 2015, http://plasmotherm.ru

    Article  CAS  PubMed  Google Scholar 

  • Sorokina, E.V., Yudina, T.P., Bubnov, I.A., and Danilov, V.S., Assessment of iron toxicity using a luminescent bacterial test with an Escherichia coli recombinant strain, Microbiology (Moscow), 2013, vol. 82, no. 4, pp. 439–444.

    Article  CAS  Google Scholar 

  • Taran, M.V., Starodub, N.F., Katsev, A.M., Guidotti, M., Khranovskyy, V.D., Babanin, A.A., and Melnychuk, M.D., Biocidal effects of silver and zinc oxide nanoparticles on the bioluminescent bacteria, Biophotonics, 2013. doi 10.1117/12.2044672

    Google Scholar 

  • Ugarova, N.N., Bioluminescence: fireflies revisited, Nature Photonics, 2008, vol. 2, no. 1, pp. 8–9.

    Article  CAS  Google Scholar 

  • Zarubina, A.P., Lukashev, E.P., Deev, L.I., Parkhomenko, I.M., and Rubin, A.B., Biotesting the biological effects of single-wall carbon nanotubes using bioluminescent bacteria test-system, Nanotechnologies in Russia, 2009, vol. 4, nos. 11–12, pp. 871–875.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Deryabin.

Additional information

Original Russian Text © D.G. Deryabin, L.V. Efremova, I.F. Karimov, I.V. Manukhov, E.Yu. Gnuchikh, S.A. Miroshnikov, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 2, pp. 177–186.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deryabin, D.G., Efremova, L.V., Karimov, I.F. et al. Comparative sensitivity of the luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis strains to toxic effects of carbon-based nanomaterials and metal nanoparticles. Microbiology 85, 198–206 (2016). https://doi.org/10.1134/S0026261716020053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716020053

Keywords

Navigation