Skip to main content
Log in

Insight on biochemical characteristics of thermotolerant amylase isolated from extremophile bacteria Bacillus vallismortis TD6 (HQ992818)

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Halotolerant bacterium Bacillus vallismortis (HQ992818) was isolated from saltern sediments in India, and produced significantly high levels extracellular amylase. A detailed investigation on the culture conditions including period of incubation, media pH, and inoculum size in addition to different sources of carbon and nitrogen, metal ions, NaCl, and amino acids was carried out for optimized production. Maximum amylase production (62 U/mL) was attained after 26 h of incubation. The optimized conditions for maximal production of amylase were found to be 1% NaCl, pH 8, temp 37°C, 1% starch, 1% sodium nitrate, phenyl alanine (0.01%) and calcium chloride (10 mM). The biochemical characteristics of the extracellular amylase were studied with respect to change in temperature, pH and metal ions. The enzyme was found to be optimally active in the temperature range of 40–70°C and pH 8. Activation of the enzyme by Ca2+ (135%), Fe2+ (113%) and Mg2+ (109%) occurred at 5 mM concentration and strongly inhibited by Hg2+, Zn2+ and Mn2+ occurred at 10 mM. Significant compatibility of the enzyme with the commercial laundry detergents and the results of washing performance test confirmed its effectiveness. Available data on the optimized culture conditions enables for easily adaptable setup of large scale production of the enzyme for use in detergent formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajagopalan, G. and Krishnan, C., Alpha amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate, Biores. Technol., 2008, vol. 99, pp. 3044–3050.

    Article  CAS  Google Scholar 

  2. Kondepudi, K.K. and Chandra, T.S., Production of surfactant and detergent-stable, halophilic and alkalitolerant α-amylase by a moderately halophilic Bacillus sp. strain TSCVKK, Appl. Microbiol. Biotechnol., 2008, vol. 77, pp 1023–1031.

    Article  Google Scholar 

  3. Mageswari, A., Parthiban, S., Suganthi, C., Karthikeyan, S., Babu, S., and Gothandam, K.M., Optimization and immobilization of amylase obtained from halotolerant bacteria isolated from solar salterns, J. Genet. Eng. Biotechnol., 2012, vol. 10, pp. 201–208.

    Article  CAS  Google Scholar 

  4. Hough, D.W. and Danson, M.J., Extremozymes, Curr. Opin. Chem. Biol., 1999, vol. 1, pp. 39–46.

    Article  Google Scholar 

  5. Patel, R., Dodia, M., and Singh, S.P., Extracellular alkaline protease from a haloalkaliphilic Bacillus sp: production and optimization, Proc. Biochem., 2005, vol. 40, pp. 3569–3575.

    Article  CAS  Google Scholar 

  6. Ollivier, B., Caumette, P., Garcia, J.L., and Mah, R.A., Anaerobic bacteria from hypersaline environments, Microbiol. Rev., 1994, vol. 58, pp. 27–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Ventosa, A. and Nieto, J.J., Biotechnological applications and potentialities of halophilic microorganisms, World J. Microbiol. Biotechnol., 1995, vol. 11, pp. 85–94.

    Article  CAS  PubMed  Google Scholar 

  8. Amoozegara, M.A., Malekzadeha, F., Khursheed, A., and Malik, Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2, J. Microbiol. Methods, 2003, vol. 52, pp. 353–359.

    Article  Google Scholar 

  9. Prakash, B., Vidyasagar, M., Madhukumar, M.S., Muralikrishna, G., and Sreeramulu, K., Production, purification, and characterization of two extremely halotolerant, thermostable and alkali-stable alpha amylases from Chromohalobacter sp. TVSP 101, Proc. Biochem., 2009, vol. 44, pp. 210–215.

    Article  CAS  Google Scholar 

  10. Jaya Prakash Goud, M., Suryam, A., Lakshmipathi, V., and Singara Charya, M.A., Extracellular hydrolytic enzyme profiles of certain South Indian basidiomycetes, Afr. J. Biotechnol., 2009, vol. 8, pp. 354–360.

    Google Scholar 

  11. Babu, K.R. and Satyanarayana, T., Parametric optimization of extracellular α-amylase production by thermophilic Bacillus coagulans, Folia Microbiol., 1993, vol. 38, pp. 77–80.

    Article  CAS  Google Scholar 

  12. Miller, G.L., Use of dinitrosalicyclic acid reagent for determination of reducing sugar, J. Anal. Chem., 1959, vol. 31, pp. 426–428.

    Article  CAS  Google Scholar 

  13. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, vol. 3.

  14. Michael, S., Roberts., Nakumura, L.K., and Choa, F.M., Bacillus vallismortis sp. nov., close relative of Bacillus subtilis, isolated from soil in Death Valley, California, Int. J. Syst. Bacteriol., 1996, vol. 46, pp. 470–475.

    Article  Google Scholar 

  15. Khire, J.M. and Pant, A., Thermostable salt-tolerant amylase from Bacillus sp., World J. Microbiol. Biotechnol., 1992, vol. 8, pp. 167–170.

    Article  CAS  PubMed  Google Scholar 

  16. Vijayabaskar, P., Jayalakshmi, D., and Shankar, T., Amylase production by moderately halophilic Bacillus cereus in solid state fermentation, Afr. J. Microbiol. Res., 2012, vol. 6, pp. 4918–4926.

    Article  CAS  Google Scholar 

  17. Jetendra, K., Roy., Sudhir, K., Rai., Ashis, K., and Mukherjee, Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-S01a, J. Biol. Macromolec., 2012, vol. 50, pp. 219–229.

    Article  Google Scholar 

  18. Burhan, A., Nisa, U., Gokhan, C., Omer, C., Ashabil, A., and Osman, G., Enzymatic properties of a novel thermophilic, alkaline and chelator resistant amylase from an alkalophilic Bacillus sp. isolate ANT-6, Proc. Biochem., 2003, vol. 38, pp. 1397–1403.

    Article  CAS  Google Scholar 

  19. Jin, B., Van-Leeuwen, J.H., and Patel, B., Mycelial morphology and fungal protein production from starch processing wastewater in submerged cultures of Aspergillus oryzae, Proc. Biochem., 1999, vol. 34, pp. 335–340.

    Article  CAS  Google Scholar 

  20. Asgher, M., Javaid Asad, M., Rahman, S.U., and Legge, R.L., A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing, J. Food Eng., 2007, vol. 79, pp. 950–955.

    Article  CAS  Google Scholar 

  21. Sivakumar, T., Shankar, T., Vijayabaskar, P., Muthukumar, J., and Nagendrakannan, E., Amylase production using Bacillus cereus isolated from a vermicompost site, Intl. J. Microbiol. Res., 2012, vol. 3, pp. 117–123.

    CAS  Google Scholar 

  22. Haseltine, C., Rolfsmeier, M., and Blum, P., The glucose effect and regulation of α-amylase synthesis in the hyperthermophilic archeon Sulfolobus solfataricus, J. Bacteriol., 1996, vol. 178, pp. 945–950.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Mukesh kumar, D.J., Andal Priyadharshini, D., Suresh, K., Saranya, G.M., Rajendran, K., and Kalaichelvan, Production, purification and characterization of α-amylase and alkaline protease by Bacillus sp. HPE10 in a concomitant production medium, Asian J. Plant Sci. Res., 2012, vol. 2, pp. 376–382.

    CAS  Google Scholar 

  24. Thippeswamy, S., Girigowda, K., and Mulimani, V.H., Isolation and identification of α-amylase producing Bacillus sp. from dhal industry waste, Indian J. Biochem. Biophys., 2006, vol. 43, pp. 295–298.

    CAS  PubMed  Google Scholar 

  25. Rasooli, I., Astaneh, S.D.A., Borna, H., and Barchini, K.A., Thermostable α-amylase producing natural variant of Bacillus spp. isolated from soil in Iran, Am. J. Agri., Bio. Sci., 2008, vol. 3, pp. 591–596.

    Article  Google Scholar 

  26. Hamilton, L.M., Kelly, C.T., and Fogarty, W.M., Purification and properties of the raw starch degrading α-amylase of Bacillus sp. IMD 434, Biotech. Lett., 1999, vol. 21, pp. 111–115.

    Article  CAS  Google Scholar 

  27. Goyal, N., Gupta, J.K., and Soni, S.K., A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch, Enzyme Microb., vol. 37, pp. 723–734.

  28. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., and Chauhan, B., Microbial α-amylase: a biotechnological perspective, Proc. Biochem., 2003, vol. 38, pp. 1599–1616.

    Article  CAS  Google Scholar 

  29. Shafiei, M., Ziaee A.A., and Amoozegar M.A., Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F, Proc. Biochem., 2010, vol. 45, pp. 694–699.

    Article  CAS  Google Scholar 

  30. Cordeiro, C.A.M., Martins, M.L.L., and Luciano, A.B., Production and properties of α-amylase from thermophilic Bacillus sp., Braz. J. Microbiol., 2002, vol. 33, pp. 57–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodiveri Muthukaliannan Gothandam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganthi, C., Mageswari, A., Karthikeyan, S. et al. Insight on biochemical characteristics of thermotolerant amylase isolated from extremophile bacteria Bacillus vallismortis TD6 (HQ992818). Microbiology 84, 210–218 (2015). https://doi.org/10.1134/S0026261715020162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715020162

Keywords

Navigation