Skip to main content
Log in

Occurrence of the SAL+ phenotype in soil pseudomonads

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Genetic systems of salicylate catabolism were studied in 75 strains of fluorescent pseudomonads and in 30 exogenously isolated SAL plasmids. All exogenously isolated SAL plasmids were found to contain the classical nahG gene in combination with the genes of the meta-pathway of catechol cleavage. In most studied strains, salicylate catabolism was controlled by the chromosomal genes, the nahU gene being the key gene of salicylate utilization and subsequent catechol cleavage occurring via the ortho-pathway. It is suggested that the nahU-like sequences play a key role in occurrence of the Sal+ phenotype in strains degrading salicylate, but not naphthalene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, J.I. and Evans, W.C., Oxidative metabolism of naphthalene by soil pseudomonas: the ring-fission mechanism, J. Biochem., 1964, vol. 91, pp. 251–261.

    CAS  Google Scholar 

  2. Evans, W.C., Fernley, H.N., and Griffiths, E., Oxidative metabolism of phenantrene and anthracene by soil pseudomonads: the ring-fission mechanism, J. Biochem., 1965, vol. 95, pp. 819–831.

    CAS  Google Scholar 

  3. Katagiri, M., Maeno, H., Yamamoto, S., Hayaishi, O., Kitao, T., and Oae, S., Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide. II. the mechanism of salicylate hydroxylation to catechol, J. Biol. Chem., 1965, vol. 240, pp. 3414–3417.

    CAS  PubMed  Google Scholar 

  4. Starovoitov, I.I., Nefedova, M.Y., Yakovlev, G.I., Zyakun, A.M., and Adanin, V.M., Gentisic acid as a microbial oxidation product of naphthalene, Izv. Akad. Nauk. SSSR Ser. Khim, 1975, vol. 9, pp. 2091–2092.

    Google Scholar 

  5. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., The P-7 incompatibility group plasmids for biodegradation of naphthalene and salicylate in fluorescent pseudomonads, Microbiology (Moscow), 2005, vol. 74, no. 3, pp. 290–295.

    Article  CAS  Google Scholar 

  6. Dunn, N.W. and Gunsalus, I.C., Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida, J. Bacteriol., 1973, vol. 114, pp. 974–979.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Dennis, J.J. and Zylstra, G.J., Complete sequence and genetic organization of pDTG1, the 83 kilobase aphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4, J. Mol. Biol., 2004, vol. 341, pp. 753–768.

    Article  CAS  PubMed  Google Scholar 

  8. Sazonova, O.I., Izmalkova, T.Yu., Kosheleva, I.A., and Boronin, A.M., Salicylate degradation of Pseudomonas putida strains not involving the “classical” nah2 operon, Microbiology (Moscow), vol. 77, no. 6, pp. 710–716.

  9. Bosch, R., Moore, E.R.B., Garcia-Valdes, E., and Pieper, D.H., NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10, J. Bacteriol., 1999, vol. 181, pp. 2315–2322.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhao, H., Chen, D., Li, Y., and Cai, B., Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6, Microbiol. Res., 2005, vol. 160, pp. 307–313.

    Article  CAS  PubMed  Google Scholar 

  11. Panov, A.V., Volkova, O.V., Puntus, I.F., Esikova, T.Z., Kosheleva, I.A., and Boronin, A.M., scpA, a new salicylate hydroxylase gene localized in salicylate/caprolactam degradation plasmids Mol. Biol., 2013, vol. 47, no. 1, pp. 105–111.

    Article  CAS  Google Scholar 

  12. Rossello-Mora, R.A., Lalucat, J., and Garcia-Valdes, E., Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains, Appl. Environ. Microbiol., 1994, vol. 60, pp. 966–972.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee, J., Min, K.R., Kim, Y.C., Kim, C.K., Lim, J.Y., Yoon, H., Min, K.H., Lee, K.S., and Kim, Y., Cloning of salicylate hydroxylase gene and catechol 2,3-dioxygenase gene and sequencing of an intergenic sequence between the two genes of Pseudomonas putida KF715, Biochem. Biophys. Res. Commun., 1995, vol. 211, pp. 382–388.

    Article  CAS  PubMed  Google Scholar 

  14. Evans, C.G.T., Herbert, D., and Tempest, D.W., The continiuous cultivation of microorganisms: II. Construction of a chemostat, Methods Microbiol., 1970, vol. 2, pp. 277–327.

    Article  CAS  Google Scholar 

  15. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., Diversity of genetic systems responsible for naphthalene biodegradation in Pseudomonas fluorescens strains, Microbiology (Moscow), 2005, vol. 74, no. 1, pp. 60–68.

    Article  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor: Clod Spring Harbor Lab. Press, 1989.

    Google Scholar 

  17. Shot Protocols in Molecular Biology, Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Eds., Wiley, 1999.

    Google Scholar 

  18. Alonso, R., Martín, A., Peláez, T., Marín, M., Rodríguez-Creixéms, M., and Bouza, E., An improved protocol for pulsed-field gel electrophoresis typing of Clostridium difficile, J. Med. Microbiol., 2005, vol. 54, pp. 155–157.

    Article  CAS  PubMed  Google Scholar 

  19. Dombek, P.E., Johnson, L.K., Zimmerley, S.T., and Sadowsky, M.J., Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources, Appl. Environnm. Microbiol., 2000, vol. 66, pp. 2572–2577.

    Article  CAS  Google Scholar 

  20. Weisburg, W.G., Barnes, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 73, pp. 697–703.

    Google Scholar 

  21. Izmalkova, T.Yu., Mavrodi, D.V., Sokolov, S.L., Kosheleva, I.A., Smalla, K., Thomas, C.M., and Boronin, A.M., Molecular classification of IncP-9 naphthalene degradation plasmids, Plasmid, 2006, vol. 56, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  22. Wilkstrom, P., Wilklund, A., Anderson, A.C., and Forman, M., DNA recovery and PCR quantification of catechol-2,3-dioxygenase genes from different soil types, J. Biotechnol., 1996, vol. 52, pp. 107–120.

    Article  Google Scholar 

  23. Greated, A. and Thomas, C.M., A pair of PCR primers for IncP-9 plasmids, Microbiology (UK), 1999, vol. 145, pp. 3003–3004.

    Google Scholar 

  24. Bergey’s Manual of Systematic Bacteriology, Krieg, N.J. and Holt, J.G., Eds., Baltimore: Williams & Wilkins, 1984.

    Google Scholar 

  25. Balashova, N.V., Kosheleva, I.A., Filonov, A.E., Gayazov, R.R., and Boronin, A.M., Phenanthrene- and naphthalene-degrading strains of Pseudomonas putida, Microbiology (Moscow), 1997, vol. 66, pp. 408–412.

    CAS  Google Scholar 

  26. Assinder, S.J. and Williams, P.A., The TOL plasmids: determinant of the catabolism of toluene and the xylenes, Adv. Microb. Physiol., 1990, vol. 31, pp. 1–69.

    Article  CAS  PubMed  Google Scholar 

  27. Sokolov, S., Chubarova, E., Kosheleva, I., and Boronin, A., Abundance of IncP-7 and IncP-9 plasmids in polluted and pristine environments, Book of Abstracts Int. Conf. Environ. Biotechnol. ISEB ESEB JSEB 2006, Leipzig, 2006, p. 234.

    Google Scholar 

  28. Pemberton, J.M., Degradative plasmids, Int. Rev. Cytol., 1983, vol. 84, pp. 155–183.

    Article  CAS  PubMed  Google Scholar 

  29. Timmis, K.N., Lehrbach, P.R., Harayama, S., Don, R.H., Mermod, N., Bas, S., Leppick, R., Weightman, A.J., Reineke, W., and Knackmuss, H.-J., Analysis and manipulation of plasmid-encoded pathways for the catabolism of aromatic compounds by soil bacteria, in Plasmids in Bacteria, Helinski, D.R., Cohen, C.N., Clewell, D.B., Jackson, D.A., and Hollaender, A., Eds., New York: Plenum, 1985, pp. 719–739.

    Chapter  Google Scholar 

  30. Yen, K.M., Sullivan, M., and Gunsalus, I.C., Electron microscope heteroduplex mapping of naphthalene oxidation genes on the NAH7 and SAL1 plasmids, Plasmid, 1983, vol. 9, pp. 105–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kosheleva.

Additional information

Original Russian Text © I.A. Kosheleva, O.I. Sazonova, T.Yu. Izmalkova, A.M. Boronin, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 6, pp. 703–711.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosheleva, I.A., Sazonova, O.I., Izmalkova, T.Y. et al. Occurrence of the SAL+ phenotype in soil pseudomonads. Microbiology 83, 805–812 (2014). https://doi.org/10.1134/S0026261714060101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714060101

Keywords

Navigation