Skip to main content
Log in

Inheritance of IncP-9 Catabolic Plasmids in Pseudomonas Bacteria

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This work investigated the capability of the conjugative transfer of epsilon-caprolactam biodegradation (CAP) plasmids, belonging to incompatibility (Inc) groups P-2, P-7, P-9, and IncP-9 naphthalene biodegradation (NAH) plasmids to various species of Pseudomonas bacteria, including strains of plant growth-promoting rhizobacteria (PGPR), and the character of plasmid inheritance in these strains. The frequency of the conjugative transfer of all CAP and NAH plasmids (irrespective of their Inc groups) into Pseudomonas PGPR was shown to be lower than that into P. putida soil strains by more than an order of magnitude. The low frequency of conjugative transfer was found not to be caused by secretion of antibiotically active metabolites by Pseudomonas PGPR strains. Stability of inheritance of catabolic plasmids under nonselective conditions was established to depend on their Inc group and bacterial host strain. Thus, all investigated plasmids were stably maintained in P. putida KT2442 and BS394 strains for at least 100 generations. However, only CAP plasmids of IncP-2 and IncP-7 groups were stably maintained in Pseudomonas PGPR cells. CAP and NAH plasmids of different IncP-9 subgroups were eliminated from cells of rhizosphere pseudomonads within several generations. Thus, the work first revealed inheritance features of IncP-9 catabolic plasmids in Pseudomonas PGPR cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Gupta, G., Parihar, S.S., Ahirwar, N.K., and Snehi, K.S., Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture, J. Microb. Biochem. Technol., 2015, vol. 7, pp. 96—102.

    CAS  Google Scholar 

  2. Siunova, T.V., Anokhina, T.O., Sizova, O.I., and Kochetkov, V.V., Impact of plant growth promoting rhizobacteria Pseudomonas in phytoremediation process, in Handbook of Phytoremediation, Golubev, I.A., Ed., New York: Nova Science, 2011, pp. 551—572.

    Google Scholar 

  3. Timmis, K.N., Pseudomonas putida: a cosmopolitan opportunist par excellence, Environ. Microbiol., 2002, vol. 4, no. 12, pp. 779—781.

    Article  Google Scholar 

  4. Smalla, K., Jechalke, S. and Top, E.M., Plasmid detection, characterization and ecology, Microbiol. Spectr., 2015, vol. 3, no. 1. https://doi.org/10.1128/microbiolspec.PLAS-0038-2014

  5. Sevastsyanovich, Y.R., Krasowiak, R., Bingle, L.E.H., et al., Diversity of IncP-9 plasmids of Pseudomonas,Microbiology, 2008, vol. 154, pp. 2929—2941.

    Article  CAS  Google Scholar 

  6. Boronin, A.M. and Kosheleva, I.A., The role of catabolic plasmids in biodegradation of petroleum hydrocarbons, in Current Environmental Issues and Challenges, Cao, G. and Orru, R., Springer-Verlag, 2014, p. 159—168. https://doi.org/10.1007/978-94-017-8777-2-9.

  7. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., et al., The P-7 incompatibility group plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads, Microbiologyia, 2005, vol. 74, no. 3, pp. 290—295.

    CAS  Google Scholar 

  8. Esikova, T.Z., Grishchenkov, V.G., and Boronin, A.M., Plasmids that control ε-caprolactam biodegradation, Microbiologiya, 1990, vol. 59, pp. 547—552.

    CAS  Google Scholar 

  9. Kochetkov, V.V. and Boronin, A.M., Comparative study of plasmids controlling for naphthalene biodegradation by a Pseudomonas culture, Microbiologiya, 1984, vol. 53, no. 4, pp. 639—644.

    CAS  Google Scholar 

  10. Chin-A-Woeng, T.F.C., Bloemberg, G.V., van der Bij, A.J., et al., Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici,Mol. Plant Microbe Interact., 1998, vol. 1, pp. 1069—1077.

    Article  Google Scholar 

  11. Mavrodi, D.V., Ksenzenko, V.N., Bonsall, R.F., et al., A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79, J. Bacteriol., 1978, vol. 80, pp. 2541—2548.

    Google Scholar 

  12. Eberl, L., Schulze, R., Ammendola, A., et al., Use of green fluorescent protein as a marker for ecological studies of activated sludge communities, FEMS Microbiol. Lett., 1997, vol. 149, pp. 77—83.

    Article  CAS  Google Scholar 

  13. Sagai, H., Hasuda, K., Iyobe, S., et al., Classification of R plasmids by incompatibility in Pseudomonas aeruginosa,Antimicrob. Agents Chemother., 1976, vol. 10, pp. 573—578.

    Article  CAS  Google Scholar 

  14. Esikova, T.Z., Ponamoreva, O.N., Baskunov, B.P., et al., Transformation of low-molecular linear caprolactam oligomers by caprolactam-degrading bacteria, J. Chem. Technol. Biotechnol., 2012, vol. 87, pp. 1284—1290.

    Article  CAS  Google Scholar 

  15. Dunn, N.W. and Gunsalus, I.C., Transmissible plasmids coding early enzymes of naphthalene oxidation in Pseudomonas putida,J. Bacteriol., 1973, vol. 114, pp. 974—997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Z. Esikova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esikova, T.Z., Anokhina, T.O., Akhmetov, L.I. et al. Inheritance of IncP-9 Catabolic Plasmids in Pseudomonas Bacteria. Russ J Genet 55, 1569–1572 (2019). https://doi.org/10.1134/S1022795419120032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419120032

Keywords:

Navigation