Skip to main content
Log in

Shifts in a bacterial community composition of a mesotrophic peatland after wildfire

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The structural changes in the bacterial community composition of the Galitskii Mokh mesotrophic peatland (Tver oblast) after the 2010 wildfire were analyzed. Burned sites demonstrated an increase in peat water pH and mineralization, with elevated nitrate and sulfate concentrations, which resulted in doubling of the numbers of culturable sulfate reducers. Although the rate of methane oxidation by peat samples from burned sites decreased, methane emission did not increase. Enumeration of bacterial phylogenetic groups by fluorescent in situ hybridization revealed doubling of the numbers of Alphaproteobacteria and Bacteroidetes in burned areas compared to an undamaged site, while a reverse pattern was observed for Deltaproteobacteria and Planctomycetes. Comparative analysis of the 16S rRNA clone libraries revealed shifts in the bacterial community composition in the peat from burned sites. Slowly growing bacteria of the phyla Verrucomicrobia and Planctomycetes were replaced by fast-growing colonizers from the Proteobacteria. The originally diverse Actinobacterial community was replaced by the one dominated by the phylotypes related to thermophilic Aciditerrimonas ferrireducens. In the Acidobacteria, a typical group of peat-inhabiting bacteria, the subgroups 3, 6, and 17 were replaced by subgroups 7 and 10. These changes in the structure of peatland microbial communities could result in disturbances of some biospheric functions of these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zavarzin, G.A. and Dedysh, S.N., Microbial processes in bog ecosystems: effect on environment and climate, in Izmenenie okruzhayushchei sredy i klimata: prirodnye i svyazannye s nimi tekhnogennye katastrofy. T. 4: Protsessy v biosfere: izmeneniya pochvenno-rastitel’nogo pokrova i territorial’nykh vod RF, krugovorot veshchestv pod vliyaniem global’nykh izmenenii klimata i katastroficheskikh protsessov (Environmental and Climatic Changes: Natural and Associated Technogenic Catastrophes. Vol. 4. Biospheric Processes: Changes in RF Soil, Vegetable Cover, and Territorial Waters Caused by Global Climatic Changes and Catastrophic Processes), Zavarzin, G.A. and Kudeyarov, V.N., Eds., Pushchino: IPC, 2008, pp. 80–96.

    Google Scholar 

  2. Fritze, H. and Pietikainen, J., Recovery of soil microbial biomass and activity from prescribed burning, Can. J. Forest Res., 1993, vol. 23, pp. 1286–1290.

    Article  Google Scholar 

  3. Pietikainen, J. and Fritze, H., Microbial biomass and activity in the humus layer following burning: short-term effects of two different fires, Can. J. Forest Res., 1993, vol. 23, pp. 1275–1285.

    Article  Google Scholar 

  4. Acea, M.J. and Carballas, T., Changes in physiological groups of microorganisms in soil following wildfire, FEMS Microbiol. Ecol., 1996, vol. 20, pp. 33–39.

    Article  CAS  Google Scholar 

  5. Hernandez, T., Garcia, C., and Reinhardt, I., Short-term effect of wildfire on the chemical, biochemical, and microbiological properties of Mediterranean pine forest soils, Biol. Fertil. Soils, 1997, vol. 25, pp. 109–116.

    Article  CAS  Google Scholar 

  6. Pietikainen, J., Hiukka, R., and Fritze, H., Does short-term heating of forest humus change its properties as a substrate for microbes?, Soil Biol. Biochem., 2000, vol. 32, pp. 277–288.

    Article  CAS  Google Scholar 

  7. Prietro-Fernandez, A., Acea, M.J., and Carballas, T., Soil microbial and extractable — and N after wildfire, Biol. Fertil. Soils, 1998, vol. 27, pp. 132–142.

    Article  Google Scholar 

  8. Saa, A., Trasar-Cepeda, M.C., and Carballas, T., Soil phosphorus status and phosphomonoesterase activity of recently burnt and unburnt soil following laboratory incubation, Soil Biol. Biochem., 1998, vol. 30, pp. 419–428.

    Article  CAS  Google Scholar 

  9. Vázquez, F.J., Acea, M.J., and Carballas, T., Changes in physiological groups of microorganisms in soil following wildfire, Microb. Ecol., 1993, vol. 13, pp. 93–104.

    Article  Google Scholar 

  10. Bogorodskaya, A.V., Ivanova, G.A., and Tarasov, P.A., Post-fire transformation of the microbial complexes in soils of larch forests in the Lower Angara River region, Euras. Soil Sci., 2011, vol. 1, pp. 49–55.

    Article  Google Scholar 

  11. Verma, S. and Jayakumar, S., Impact of forest fire on physical, chemical and biological properties of soil: a review, Proc. Int. Acad. Ecol. Environ. Sci., 2012, vol. 2, no. 3, pp. 168–176.

    CAS  Google Scholar 

  12. Akhmet’eva, N.P., Belova, S.E., Dzhamalov, R.G., Kulichevskaya, I.S, Lapina, E.E., and Mikhailova, A.V., Natural post-fire bog recovery, Water Res., 2014, vol. 41, no. 4, pp. 353–363.

    Article  Google Scholar 

  13. Zoltai, S.C., Morrissey, L.A., Livingston, G.P., and de Groot, W.J., Effects of fires on carbon cycling in North American boreal peatlands, Environ. Rev., 1998, vol. 6, no. 1, pp. 13–24.

    Article  CAS  Google Scholar 

  14. Wieder, R.K., Scott, K.D., Kamminga, K., Vile, M.A., Vittd, H., Bone, T., Xu, B., Benscoter, B. W., and Bhatti, J.S., Postfire carbon balance in boreal bogs of Alberta, Canada, Global Change Biol., 2009, vol. 15, pp. 63–81.

    Article  Google Scholar 

  15. Grosse, G., Harden, J., Turetsky, M., McGuire, A.D., Camill, P., Tarnocia, C., et al., Vulnerability of high-latitude soil organic carbon in North America to disturbance, J. Geophys. Res., 2011, vol. 116, G00K06. doi: 10.1029/2010JG001507

    Google Scholar 

  16. Zavarzin, G.A., Ombrophiles—inhabitants of the plains, Priroda (Moscow, Russ. Fed.), 2009, no. 6, pp. 3–14.

    Google Scholar 

  17. Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T., Regional methane emission from West Siberia mire landscapes, Environ. Res. Lett., 2011, vol. 6, no. 4, 045214. DOI: 10.1088/1748-9326/6/4/045214

    Article  Google Scholar 

  18. Kuznetsov, S.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods for Analysis of Natural Waters), Moscow: Nauka, 1989.

    Google Scholar 

  19. Pankratov, T.A., Belova, S.E., and Dedysh, S.N., Evaluation of the phylogenetic diversity of prokaryotic microorganisms in Sphagnum peat bogs by means of fluorescence in situ hibridization (FISH), Microbiology (Moscow), 2005, vol. 74, no. 6, pp. 722–728.

    Article  CAS  Google Scholar 

  20. Dedysh, S.N., Pankratov, T.A., Belova, S.E., Kulichevskaya, I.S., and Liesack, W., Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic sphagnum peat bog, Appl. Environ. Microbiol., 2006, vol. 72, no. 3, pp. 2110–2117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, pp. 697–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Danilova, O.V. and Dedysh, S.N., Abundance and diversity of methanotrophic Gammaproteobacteria in northern wetlands, Microbiology (Moscow), 2014, vol. 83, nos. 1–2, pp. 67–76.

    Article  CAS  Google Scholar 

  23. Stams, A.J.M., Plugge, C.M., de Bok, F.A.M., van Houten, B.H.G.W., Lens, P., and Dijkman, H., Metabolic interactions in methanogenic and sulfate-reducing bioreactors, Water Sci. Technol., 2005, vol. 52, pp. 13–20.

    CAS  PubMed  Google Scholar 

  24. Kulichevskaya, I.S., Pankratov, T.A., and Dedysh, S.N., Detection of representatives of the Planctomycetes in Sphagnum peat bogs by molecular and cultivation approaches, Microbiology (Moscow), 2006, vol. 75, no. 3, pp. 329–335.

    Article  CAS  Google Scholar 

  25. Serkebaeva, Y.M., Kim, Y., Liesack, W., and Dedysh, S.N., Pyrosequencing-based assessment of the Bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions, Plos One, 2013, vol. 8, no. 5: e63994. doi: 10.1371/journal.pone.0063994

    Article  PubMed Central  PubMed  Google Scholar 

  26. Itoh, T., Yamanoi, K., Kudo, T., Ohkuma, M., and Takashina T., Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 1281–1285.

    Article  PubMed  Google Scholar 

  27. Spieck, E., Hartwig, C., McCormack, I., Maixner, F., Wagner, M., Lipski, A., and Daims, H., Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge, Environ. Microbiol., 2006, vol. 8, no. 3, pp. 405–415.

    Article  CAS  PubMed  Google Scholar 

  28. Izumi, H., Nunoura, T., Miyazaki, M., Mino, S., Toki, T., Takai, K., Sako, Y., Sawabe, T., and Nakagawa, S., Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough, Extremophiles, 2012, vol. 16, pp. 245–253.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Dedysh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, S.E., Kulichevskaya, I.S., Akhmet’eva, N.P. et al. Shifts in a bacterial community composition of a mesotrophic peatland after wildfire. Microbiology 83, 813–819 (2014). https://doi.org/10.1134/S0026261714060022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714060022

Keywords

Navigation