Skip to main content
Log in

Use of genes of carbon metabolism enzymes as molecular markers of Chlorobi phylum representatives

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This work examined the feasibility of using certain genes of carbon metabolism enzymes as molecular markers adequate for studying phylogeny and ecology of green sulfur bacteria (GSB) of the Chlorobi phylum. Primers designed to amplify the genes of ATP citrate lyase (aclB) and citrate synthase (gltA) revealed the respective genes in the genomes of all of the newly studied GSB strains. The phylogenetic trees constructed based on nucleotide sequences of these genes and amino acid sequences of the conceptually translated proteins were on the whole congruent with the 16S rRNA gene tree, with the single exception of GltA of Chloroherpeton thalassium, which formed a separate branch beyond the cluster comprised by other representatives of the Chlorobi phylum. Thus, the aclB genes but not gltA genes proved to be suitable for the design of primers specific to all Chlorobi representatives. Therefore, it was the aclB gene that was further used as a molecular marker to detect GSB in enrichment cultures and environmental samples. AclB phylotypes of GSB were revealed in all of the samples studied, with the exception of environmental samples from soda lakes. The identification of the revealed phylotypes was in agreement with the identification based on the FMO protein gene (fmo), which is a well-known Chlorobi-specific molecular marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pfennig, N., Green sulfur bacteria, in Bergey’s Manual of Systematics Bacteriology, 1st ed., Staley, J.T., Bryant, M.P., Pfennig, N., and Holt, J.G, Eds., Baltimore: Williams & Wilkins, 1989, vol. 1, pp. 1697–1709.

    Google Scholar 

  2. Overmann, J., Green sulfur bacteria, in Bergey’s Manual of Systematics Bacteriology, 2nd ed., Boone, D.R., Castenholz, R.W., and Garrity, G.M., Eds., New York-Berlin-Heidelberg: Springer, 2001, vol. 1, pp. 601–605.

    Google Scholar 

  3. Imhoff, J.F., Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 941–951.

    Article  CAS  PubMed  Google Scholar 

  4. Gibson, J., Pfennig, N.P., John, B., and Waterbury, J.B., Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium, Arch. Microbiol., 1984, vol. 38, pp. 96–101.

    Article  Google Scholar 

  5. Davenport, C., David, W., Ussery, D.W., and Tummler, B., Comparative genomics of green sulfur bacteria, Photosynth. Res., 2010, vol. 104, pp. 137–152.

    Article  CAS  PubMed  Google Scholar 

  6. Bryant, D.A., Liu, Z., Li, T., Zhao, F., Costas, A.M.G., Klatt, C.G., Ward, D.M., Frigaard, N.-U., and Overmann, J., Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi and Acidobacteria, in Adv. Photosynth. Respir., vol. 35, Functional Genomics and Evolution of Photosynthetic Systems, Burnap, R.L. and Vermaas, W., Eds., Dordrecht: Springer, 2012, pp. 47–102.

    Google Scholar 

  7. Liu, Z., Klatt, C.G., Ludwig, M., Rusch, D.B., Jensen, S.I., Kühl, M., Ward, D.M., and Bryant, D.A., ‘Candidatus Thermochlorobacter aerophilum’: an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics, ISME J., 2012, vol. 6, pp. 1869–1882.

    Article  CAS  PubMed  Google Scholar 

  8. Antranikian, G., Herzberg, C., and Gottshchalk, G., Characterization of ATP citrate lyase from Chlorobium limicola, J. Bacteriol., 1982, vol. 152, pp. 1284–1287.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Wahlund, T.M. and Tabita, F.R., The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum, J. Bacteriol., 1997, vol. 179, pp. 4859–4867.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Kanao, T., Fukui, T., Atomi, H., and Imanaka, T., ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products, Eur. J. Biochem., 2001, vol. 268, pp. 1670–1678.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, B.J., Stein, J.L., and Cary, S.C., Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete, Appl. Environ. Microbiol., 2003, vol. 69, pp. 5070–5078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hugler, M., Wirsen, C.O., Fuchs, G., Taylor, C.D., and Sievert, S.M., Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ɛ-subdivision of proteobacteria, J. Bacteriol., 2005, vol. 187, pp. 3020–3027.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Takai, K., Campbell, B.J., Cary, S.C., Suzuki, M., Oida, H., Nunoura, T., Hirayama, H., Nakagawa, S., Suzuki, Y., Inagaki, F., and Horikoshi, K., Enzymatic and genetic characterization of carbon and energy metabolism by deep-sea hydrothermal chemolithoautotrophic isolates of epsilon-proteobacteria, Appl. Environ. Microbiol., 2005, vol. 71, pp. 7310–7320.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hugler, M., Huber, H., Molyneaux, S.J., Vetriani, C., and Sievert, S.M., Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage, Environ. Microbiol., 2007, vol. 9, pp. 81–92.

    Article  CAS  PubMed  Google Scholar 

  15. Lucker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B., Rattei, T., Damsté, J.S., Spieck, E., Le Paslier, D., and Daims, H., Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria, Proc. Nat. Acad. Sci. USA, 2010, vol. 107, pp. 13479–13484.

    Article  PubMed  Google Scholar 

  16. Schauder, R., Widdel, F., and Fuchs, G., Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus, Arch. Microbiol., 1987, vol. 148, pp. 218–225.

    Article  CAS  Google Scholar 

  17. Aoshima, M., Ishii, M., and Igarashi, Y., A novel enzyme, citryl-CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6, Mol. Microbiol., 2004, vol. 52, pp. 763–770.

    Article  CAS  PubMed  Google Scholar 

  18. Levican, G., Ugalde, J.A., Ehrenfeld, N., Maass, A., and Parada, P., Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations, BMC Genomics, 2008, vol. 9, p. 581.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Williams, T.J., Zhang, C.L., Scott, J.H., and Bazylinski, D.A., Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1322–1329.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Markert, S., Arndt, C., Felbeck, H., Becher, D., Sievert, S.M., Hügler, M., Albrecht, D., Bench, S., Feldman, R.A., Hecker, M., and Schweder, T., Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila, Science, 2007, vol. 315, pp. 247–250.

    Article  CAS  PubMed  Google Scholar 

  21. Tang, K.-H. and Blankenship, R.E., Both forward and reverse TCA cycles operate in green sulfur bacteria, J. Biol. Chem., 2010, vol. 285, pp. 35848–35854.

    Article  CAS  PubMed  Google Scholar 

  22. Keppen, O.I., Berg, I.A., Lebedeva, N.V., Taisova, A.S., Kolganova, T.V., Slobodova, N.V., Bulygina, E.S., Tourova, T.P., and Ivanovsky, R.N., Chlorobaculum macestae sp. nov., a new green sulfur bacterium, Microbiology (Moscow), 2008, vol. 77, no. 1, pp. 69–77.

    Article  CAS  Google Scholar 

  23. Lunina, O.N., Savvichev, A.S., Kuznetsov, B.B., Pimenov, N.V., and Gorlenko, V.M., Anoxygenic phototrophic bacteria of the Kislo-Sladkoe stratified lake (White Sea, Kandalaksha Bay), Microbiology (Moscow), 2014, vol. 83, no. 1, pp. 815–832.

    Google Scholar 

  24. Birnboim, H.C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acid Res., 1979, vol. 7, pp. 1513–1523.

    Article  CAS  PubMed  Google Scholar 

  25. Alexander, B., Andersen, J.H., Cox, R.P., and Imhoff, J.F., Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna? Matthews-Olson protein, Arch. Microbiol., 2002, vol. 178, pp. 131–140.

    Article  CAS  PubMed  Google Scholar 

  26. Van de Peer, Y. and De Wachter, R., TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Applic. Biosci., 1994, vol. 10, pp. 569–570.

    Google Scholar 

  27. Keppen, O.I., Tourova, T.P., Ivanovsky, R.N., Lebedeva, N.V., Baslerov, R.V., and Berg, I.A., Phylogenetic position of three strains of green sulfur bacteria, Microbiology (Moscow), 2008, vol. 77, no. 2, pp. 243–246.

    Article  CAS  Google Scholar 

  28. Ivanovsky, R.N., Sintsov, N.V., and Kondratieva, E.N., ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum, Arch. Microbiol., 1980, vol. 128, pp. 239–241.

    Article  Google Scholar 

  29. Santos, S.R. and Ochman, H., Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins, Environ. Microbiol., 2004, vol. 6, pp. 754–759.

    Article  CAS  PubMed  Google Scholar 

  30. Birtles, R.J. and Raoult, D., Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species, Int. J. Syst. Bacteriol., 1996, vol. 46, pp. 891–897.

    Article  CAS  PubMed  Google Scholar 

  31. Roux, V., Rydkina, E., Eremeeva, M., and Raoult, D., Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 252–261.

    Article  CAS  PubMed  Google Scholar 

  32. Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P., and Willems, A., Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium), Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 200–214.

    Article  CAS  PubMed  Google Scholar 

  33. Iredell, J., Blanckenberg, D., Arvand, M., Grauling, S., Feil, E.J., and Birtles, R.J., Characterization of the natural population of Bartonella henselae by multilocus sequence typing, J. Clin. Microbiol., 2003, vol. 41, pp. 5071–5079.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Manske, A.K., Glaeser, J., Kuypers, M.M.M., and Overmann, J., Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8049–8060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gorlenko, V.M. and Kusnezov, S.I., Uber die photo-synthetisierenden Bacterien des Kononjer Sees, Arch. Hydrobiol., 1972, vol. 70, pp. 1–13.

    Google Scholar 

  36. Kovaleva, O.L., Tourova, T.P., Muyzer, G., Kolganova, T.V., and Sorokin, D.Y., Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments, FEMS Microbiol. Ecol., 2011, vol. 75, pp. 37–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Tourova.

Additional information

Original Russian Text © T.P. Tourova, O.L. Kovaleva, V.M. Gorlenko, R.N. Ivanovsky, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 1, pp. 72–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tourova, T.P., Kovaleva, O.L., Gorlenko, V.M. et al. Use of genes of carbon metabolism enzymes as molecular markers of Chlorobi phylum representatives. Microbiology 82, 784–793 (2013). https://doi.org/10.1134/S0026261714010159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714010159

Keywords

Navigation