Skip to main content
Log in

Optimization of culture media for L-asparaginase production by newly isolated bacteria, Bacillus sp. GH5

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The enzyme L-asparaginase has been extensively studied by many researchers mainly because of its considerable therapeutic properties. Producing a convenient quantity of L-asparaginase can be conducted either by discovering new microbial sources with higher enzyme production or by manipulating the medium components for known microbial sources. The present paper discusses the studies carried out in order to enhance the production of L-asparaginase by newly isolated bacteria, Bacillus sp. GH5. Based on the results obtained from media optimization studies, a modified media was developed for optimal L-asparaginase production. Concisely, screening of the nutrients using a proper statistical design showed that tapioca starch, gelatin, ammonium oxalate, CaCO3, and L-asparagine were respectively the most important sources for carbon, organic nitrogen, inorganic nitrogen, mineral salt, and amino acids. The composition of the optimized medium was the following (per 1 L): 5.0 g L-asparagine; 0.5 g MgSO4 · 7H2O; 6.0 g NaHPO4 · 2H2O; 3.0 g (NH4)2C2O4; 0.5 g CaCO3; 0.014 g CaCl2 · 2H2O; 2.0% w/v tapioca starch; 5.0 g gelatin; and 15.0 g agar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Bessoumy, A.A., Sarhan, M., and Mansour, J., Production, isolation, and purification of L-asparaginase from Pseudomonas aeruginosa, using solid-state fermentation, J. Biochem. Mol. Biol., 2001, vol. 37, pp. 387–393.

    Article  Google Scholar 

  2. Borek, D. and Jaskóski, M., Sequence analysis of enzymes with asparaginase activity, Acta Biochem. Pol., 2001, vol. 48, pp. 893–902.

    CAS  Google Scholar 

  3. Broome, J.D., L-Asparaginase: discovery and development as a tumor-inhibitory agent, Cancer Treat. Rep., 1981, vol. 65, no. 4, pp. 111–114.

    CAS  PubMed  Google Scholar 

  4. Lee, S.M., Wroble, M.H., and Ross, J.T., L-asparaginase from Erwinia carotovora-an improved recovery and purification process using affinity chromatography, Appl. Biochem. Biotechnol., 1989, vol. 22, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Sabu, A., Sources, properties and applications of microbial therapeutic enzymes, Ind. J. Biotechnol., 2003, vol. 2, pp. 334–341.

    CAS  Google Scholar 

  6. Derst, C., Wehner, A., Specht, V., and Rohm, K.H., States and functions of tyrosine residues in Escherichia coli asparaginase, Eur. J. Biochem., 1994, vol. 224, pp. 533–540.

    Article  CAS  PubMed  Google Scholar 

  7. Mercado, L. and Arenas, G., Escherichia coli L-asparaginas induced phosphorylation of endogenous polypeptide in human immune cells, Sangre (Brac), 1999, vol. 44, pp. 438–442.

    CAS  Google Scholar 

  8. Maladkar, N.K., Singh, V.K., and Naik, S.R., Fermentative production and isolation of L-asparaginase from Erwinia carotovora EC-113, Hidustan Antibiot. Bull., 1993, vol. 35, pp. 77–86.

    CAS  Google Scholar 

  9. Aghaiypour, K., Wlodowes, A., and Lubkowski, J., Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase, Biochemistry, 2001, vol. 40, pp. 5655–5664.

    Article  CAS  PubMed  Google Scholar 

  10. Prista, A.A. and Kyridio, D.A., L-Asparaginase of Thermus thermophilus: purification, properties and identification of essential amino acids for catalytic activity, Mol. Cell. Biochem., 2001, vol. 216, pp. 93–101.

    Article  Google Scholar 

  11. Mukherjee, J., Majumadar, S., and Scheper, T., Studies on nutritional and oxygen requirements for production of L-asparaginase by Enterobacter aerogenes, Appl. Microb. Biotechnol., 2000, vol. 53, pp. 180–184.

    Article  CAS  Google Scholar 

  12. Dhevagi, P. and Poorani, E., Isolation and characterization of L-asparaginase from marine actinomycetes, Ind. J. Biotechnol., 2006, vol. 5, pp. 514–520.

    CAS  Google Scholar 

  13. Verma, N., Kumar, K., Kaur, G., and Anand, S., L-Asparaginase: a promising chemotherapeutic agent, Crit. Rev. Biotechnol., 2007, vol. 27, pp. 45–62.

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz, J.H., Reeves, J.Y., and Broome, J.D., Two L-asparaginases from Escherichia coli and their action against tumors, Proc. Natl. Acad. Sci. USA, 1966, vol. 56, pp. 1516–1519.

    Article  CAS  PubMed  Google Scholar 

  15. Stecher, A.L., Morgantetti De Deus, P., Polikarpov, I., and Abrahao-Neto, J., Stability of L-asparaginase-an enzyme used in leukemia treatment, Pharmaceut. Acta Helv., 1999, vol. 74, pp. 1–9.

    Article  CAS  Google Scholar 

  16. Mosterson, M.A., Hull, B.L., and Vollmer, L.A., Treatment of bovine lymphomsarcoma with L-asparaginase, J. Amer. Vet. Med. Assoc., 1988, vol. 192, pp. 1301–1306.

    Google Scholar 

  17. Yunis, A.A., Arimures, G.K., and Russin, D.J., Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase, Int. J. Cancer, 1977, vol. 19, pp. 218–235.

    Article  Google Scholar 

  18. Ohnishi, S.T. and Barr, J.K., A simplified method of quantitating protein using the biuret and phenol reagent, J. Anal. Biochem., 1978, vol. 86, pp. 193–200.

    Article  CAS  Google Scholar 

  19. Basha, S.N., Rekha, R., Komala, M., and Ruby, S., Production of extracellular anti-leukaemic enzyme L-asparaginase from marine actinomycetes by solidstate and submerged fermentation: purification and characterization, Tropical J. Pharm. Res., 2009, vol. 8, pp. 353–360.

    Article  CAS  Google Scholar 

  20. Imada, A., Igarasi, S., Nakahama, K., and Isono, M., Asparaginase and glutaminase activities of microorganisms, J. Gen. Microbiol., 1973, vol. 76, pp. 85–99.

    Article  CAS  PubMed  Google Scholar 

  21. Plackett, R.L. and Burman, J.P., The design of optimum multifactorial experiments, Biometrika, 1944, vol. 33, pp. 305–325.

    Article  Google Scholar 

  22. Murthy, M.V., Mohan E.V.S., and Sadhukhan, A.K., Cyclosporin A production by Tolypocladium inflatum using solid state fermentation, Proc. Biochem., 1999, vol. 34, pp. 269–280.

    Article  CAS  Google Scholar 

  23. Akhnazarova, S. and Kafarov, V., Experimental Optimization in Chemistry and Chemical Engineering, Moscow: Mir, 1982.

    Google Scholar 

  24. Heinemann, B. and Howard, A.J., Influence of dissolved oxygen levels on production of L-asparaginase and prodigiosin by Serratia marcescens, Appl. Microbiol., 1969, vol. 18, pp. 550–554.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Liu, F.S. and Zajic, J.E., L-Asparaginase synthesis by Erwinia aroideae, Appl. Microbiol., 1971, vol. 23, pp. 667–668.

    Google Scholar 

  26. Albanese, E. and Kafkewitz, D., Effect of medium composition on the growth and asparaginase production of Vibrio succinogenes, Appl. Environ. Microbiol., 1978, vol. 36, pp. 25–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Sukumaran, C.P., Singh, D.V., and Mahadevan, P.R., Synthesis of L-asparaginase by Serratia marcescens (Nima), J. Biosci., 1979, vol. 3, pp. 263–269.

    Article  Google Scholar 

  28. Abdel-Fattah, Y.R., Saeed, H.M., Gohar, Y.M., and El-Baz, M.A., Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs, Proc. Biochem., 2005, vol. 40, pp. 1707–1714.

    Article  CAS  Google Scholar 

  29. Kim, H.O., Lim, J.M., Joo, J.H., Kim, S.W., Hwang, H.J., Choi, J.W., and Yun, J.W., Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea, Biores. Technol., 2005, vol. 96, pp. 1175–1182.

    Article  CAS  Google Scholar 

  30. Lee, K.M. and Gilmore, D.F., Formulation and process modeling of biopolymer (polyhydroxyalkanoates: PHAs) production from industrial wastes by novel crossed experimental design, Proc. Biochem., 2005, vol. 40, pp. 229–246.

    Article  CAS  Google Scholar 

  31. Nawani, N.N. and Kapadnis, B.P., Optimization of chitinase production using statistics based experimental designs, Proc. Biochem., 2005, vol. 40, pp. 651–660.

    Article  CAS  Google Scholar 

  32. Senthil, K.M. and Selvam, K., Isolation and purification of high efficiency L-asparaginase by quantitative preparative continuous-elution SDS PAGE electrophoresis, J. Microb. Biochem. Technol., 2011, vol. 3, pp. 073–083.

    Google Scholar 

  33. Baskar, G. and Renganathan, S., Optimization of L-asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network-linked genetic algorithm, Asia-Pacific J. Chem. Eng., 2012, vol. 7, pp. 212–220.

    Article  CAS  Google Scholar 

  34. Sanjeeviroyar, A., Rajendran, A., Muthuraj, M., Basha, K.M., and Thangavelu, V., Sequential optimization and kinetic modeling of L-asparaginase production by Pectobacterium carotovorum in submerged fermentation, Asia-Pacific J. Chem. Eng., 2010, vol. 5, pp. 743–755.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Gholamian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gholamian, S., Gholamian, S., Nazemi, A. et al. Optimization of culture media for L-asparaginase production by newly isolated bacteria, Bacillus sp. GH5. Microbiology 82, 856–863 (2013). https://doi.org/10.1134/S0026261714010032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714010032

Keywords

Navigation