Skip to main content
Log in

Optimization of fermentation conditions for enhancing extracellular production of L-asparaginase, an anti-leukemic agent, by newly isolated Streptomyces brollosae NEAE-115 using solid state fermentation

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Optimization of the fermentation conditions for extracellular production of L-asparaginase by Streptomyces brollosae NEAE-115 under solid state fermentation was investigated. The Plackett–Burman experimental design was used to screen 16 independent variables (incubation time, moisture content, inoculum size, temperature, pH, soybean meal + wheat bran, dextrose, fructose, L-asparagine, yeast extract, KNO3, K2HPO4, MgSO4.7H2O, NaCl, FeSO4. 7H2O, CaCl2) and three dummy variables. The most significant independent variables found to affect enzyme production, namely soybean + wheat bran (X6), L-asparagine (X9) and K2HPO4 (X12), were further optimized by the central composite design. We found that L-asparaginase production by S. brollosae NEAE-115 was 47.66, 129.92 and 145.57 units per gram dry substrate (U/gds) after an initial survey using “soybean meal + wheat bran” as a substrate for L-asparaginase production (step 1), statistical optimization by Plackett–Burman design (step 2) and further optimization by the central composite design (step 3), respectively, with a fold of increase of 3.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhnazarova S, Afarov KV (1982) Experiment optimization in chemistry and chemical engineering. Mir, Moscow

    Google Scholar 

  • Amena S, Vishalakshi N, Prabhakar M, Dayanand A, Lingappa K (2010) Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Braz J Microbiol 41:173–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar G, Renganathan S (2009) Statistical screening of process variables for the production of L-asparaginase from cornflour by Aspergillus terreus MTCC 1782 in submerged fermentation. Ind J Sci Technol 2:45–48

    CAS  Google Scholar 

  • Bhargavi M, Jayamadhuri R (2016) Isolation and screening of marine bacteria producing anti-cancer enzyme L-asparaginase. Am J Mar Sci 4(1):1–3

    Google Scholar 

  • Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley, New York

    Google Scholar 

  • Chen G-Q, Lu F-P, Du L-X (2008) Natamycin production by Streptomyces gilvosporeus based on statistical optimization. J Agric Food Chem 56:5057–5061

    Article  CAS  PubMed  Google Scholar 

  • Chen X-C, Bai J-X, Cao J-M, Li Z-J, Xiong J, Zhang L, Hong Y, Ying H-J (2009) Medium optimization for the production of cyclic adenosine 3′, 5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour Technol 100:919–924

    Article  CAS  PubMed  Google Scholar 

  • DeJong PJ (1972) L-Asparaginase production by Streptomyces griseus. Appl Microbiol 23:1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmsthiti SC, Luechai S (2011) Purification and characterization of asparaginase from solid state culture of Aspergillus niger AK10. Int J Biotechnol Biochem 7:1083–1092

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • El-Bessoumy AA, Sarhan M, Mansour J (2004) Production, isolation, and purification of L-asparaginase from Pseudomonas aeruginosa 50071 using solid-state fermentation. J Biochem Mol Biol 37:387–393

    CAS  PubMed  Google Scholar 

  • El-Naggar NE (2015) Extracellular production of the oncolytic enzyme, L-asparaginase, by newly isolated Streptomyces sp. strain NEAE-95 as potential microbial cell factories: optimization of culture conditions using response surface methodology. Curr Pharm Biotechnol 16:162–178

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar NE, Moawad H (2015) Streptomyces brollosae sp. nov., NEAE-115, a novel L-asparaginase producing actinomycete isolated from Brollos Lake at the Mediterranean coast of Egypt. J Pure Appl Microbiol 9:11–20

    Google Scholar 

  • El-Naggar NE, Abdelwahed N, Darwesh O (2014a) Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory. J Microbiol Biotechnol 24:453–464

    Article  CAS  Google Scholar 

  • El-Naggar NE, El-Ewasy SM, El-Shweihy NM (2014b) Microbial L-asparaginase as a potential therapeutic agent for the treatment of acute lymphoblastic leukemia: the pros and cons. Int J Pharmacol 10:182–199

    Article  Google Scholar 

  • El-Naggar NE, Moawad H, El-Shweihy NM, El-Ewasy SM (2015) Optimization of culture conditions for production of the anti-leukemic glutaminase free L-asparaginase by newly isolated Streptomyces olivaceus NEAE-119 using response surface methodology. Biomed Res Int. doi:10.1155/2015/627031

    PubMed Central  Google Scholar 

  • Gao H, Liu M, Liu J, Dai H, Zhou X, Liu X, Zhuo Y, Zhang W, Zhang L (2009) Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 100:4012–4016

    Article  CAS  PubMed  Google Scholar 

  • Gulati R, Saxena R, Gupta R (1997) A rapid plate assay for screening L-asparaginase producing micro-organisms. Lett Appl Microbiol 24:23–26

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan B, Sahadevan R (2011) Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol Bioprocess Eng 16:50–58

    Article  CAS  Google Scholar 

  • Hymavathi M, Sathish T, Rao CS, Prakasham R (2009) Enhancement of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using response surface methodology. Appl Biochem Biotechnol 159:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kaushik R, Saran S, Isar J, Saxena R (2006) Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B Enzyme 40:121–126

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) L-asparaginase production by actinomycetes isolated from some Thai medicinal plant rhizosphere soils. Int J Integr Biol 6:22–26

    CAS  Google Scholar 

  • Krishnan S, Prapulla S, Rajalakshmi D, Misra M, Karanth N (1998) Screening and selection of media components for lactic acid production using Plackett–Burman design. Bioprocess Eng 19:61–65

    Article  CAS  Google Scholar 

  • Kumar S, Pakshirajan K, Dasu VV (2009) Development of medium for enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Appl Microbiol Biotechnol 84:477–486

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dasu VV, Pakshirajan K (2010) Localization and production of novel L-asparaginase from Pectobacterium carotovorum MTCC 1428. Process Biochem 45:223–229

    Article  CAS  Google Scholar 

  • Lapmak K, Lumyong S, Thongkuntha S, Wongputtisin P, Sardsud U (2010) L-asparaginase production by Bipolaris sp. BR438 isolated from brown rice in Thailand. Chiang Mai J Sci 37:160–164

    Google Scholar 

  • Latimer GW (2012) Official methods of analysis of AOAC International, 19th edn. AOAC International, Rockville

  • Levin L, Forchiassin F, Viale A (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Process Biochem 40:1381–1387

    Article  CAS  Google Scholar 

  • Lingappa K, Babu CV (2005) Production of lovastatin by solid state fermentation of carob (Ceratonia siliqua) pods using Aspergillus terreus KLVB 28. Ind J Microbiol 45:283

    CAS  Google Scholar 

  • Liu B-L, Tzeng Y-M (1998) Optimization of growth medium for the production of spores from Bacillus thuringiensis using response surface methodology. Bioprocess Eng 18:413–418

    CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168:311–332

    Article  CAS  PubMed  Google Scholar 

  • Mishra A (2006) Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl Biochem Biotechnol 135:33–42

    Article  CAS  PubMed  Google Scholar 

  • Montgomery DC (1991) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  • Mostafa S (1979) Activity of L-asparaginase in cells of Streptomyces karnatakensis. Zentralbl Bakteriol Naturwiss 134:343–351

    CAS  PubMed  Google Scholar 

  • Narayana K, Kumar K, Vijayalakshmi M (2008) L-asparaginase production by Streptomyces albidoflavus. Ind J Microbiol 48:331–336

    Article  CAS  Google Scholar 

  • Narta UK, Kanwar SS, Azmi W (2007) Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Crit Rev Oncol Hematol 61:208–221

    Article  PubMed  Google Scholar 

  • Pandey A, Soccol C, Rodriguez-Leon J, Singh-Nee Nigam P (2001) Solid state fermentation in biotechnology: fundamentals and applications reference book. Asiatech Publishers, New Delhi

    Google Scholar 

  • Panwal J, Viruthagiri T, Baskar G (2011) Statistical modeling and optimization of enzymatic milk fat splitting by soybean lecithin using response surface methodology. Int J Nutr Metabol 3:50–57

    Google Scholar 

  • Pattnaik S, Kabi R, Ram KJ, Bhanot K (2000) L-asparaginase activity in Aeromonas sp. isolated from fresh water mussel. Ind J Exp Biol 38:1143–1146

    CAS  Google Scholar 

  • Pedreschi F, Kaack K, Granby K (2008) The effect of asparaginase on acrylamide formation in French fries. Food Chem 109:386–392

    Article  CAS  PubMed  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  • Pradhan B, Dash SK, Sahoo S (2013) Screening and characterization of extracelluar L-asparaginase producing Bacillus subtilis strain hswx88, isolated from Taptapani hotspring of Odisha, India. Asian Pac J Trop Biomed 3:936–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakasham R, Subba Rao C, Sreenivas Rao R, Sarma P (2007) Enhancement of acid amylase production by an isolated Aspergillus awamori. J Appl Microbiol 102:204–211

    Article  CAS  PubMed  Google Scholar 

  • Pritsa A, Papazisis K, Kortsaris A, Geromichalos G, Kyriakidis D (2001) Antitumor activity of L-asparaginase from Thermus thermophilus. Anticancer Drugs 12:137–142

    Article  CAS  PubMed  Google Scholar 

  • Revankar MS, Lele S (2006) Increased production of extracellular laccase by the white rot fungus Coriolus versicolor MTCC 138. World J Microbiol Biotechnol 22:921–926

    Article  CAS  Google Scholar 

  • Sarquis MI, Oliveira EM, Santos AS, Costa GL (2004) Production of L-asparaginase by filamentous fungi. Mem Inst Oswaldo Cruz 99:489–492

    Article  CAS  PubMed  Google Scholar 

  • Sivasankar P, Sugesh S, Vijayanand P, Sivakumar K, Vijayalakshmi S, Balasubramanian T, Mayavu P (2013) Efficient production of l-asparaginase by marine Streptomyces sp. isolated from Bay of Bengal, India. Afr J Microbiol Res 7:4015–4021

    Google Scholar 

  • Sreenivasulu V, Jayaveera K, Rao PM (2009) Optimization of process parameters for the production of L-asparaginase from an isolated fungus. Res J Pharmacogn Phytochem 1:30–34

    Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (2013) Principles of fermentation technology. Elsevier, Amsterdam

  • Sudhir AP, Dave BR, Trivedi KA, Subramanian RB (2012) Production and amplification of an l-asparaginase gene from actinomycete isolate Streptomyces ABR2. Ann Microbiol 62:1609–1614

    Article  CAS  Google Scholar 

  • Suresh J, Raju KJ (2012) Studies on the production of L-asparaginase by Aspergillus terreus MTCC 1782 using agro-residues under mixed substrate solid state fermentation. J Chem Biol Phys Sci 3:314–325

    Google Scholar 

  • Venil C, Lakshmanaperumalsamy P (2009) Solid state fermentation for production of L-asparaginase in rice bran by Serratia marcescens SB08. Internet J Microbiol 7:30

    Google Scholar 

  • Wang YH, Feng JT, Zhang Q, Zhang X (2008) Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. J Appl Microbiol 104:735–744

    Article  CAS  PubMed  Google Scholar 

  • Weinberg E (1974) Secondary metabolism: control by temperature and inorganic phosphate. Dev Ind Microbiol 15:70–81

    CAS  Google Scholar 

  • Wriston J, Yellin T (1973) L-asparaginase: a review. Adv Enzymol 39:185–248

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the Science and Technology Development Fund (STDF), Egypt, for their financial support of this paper which is a part of the Grant No. 4943.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noura El-Ahmady El-Naggar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ahmady El-Naggar, N., Moawad, H. & Abdelwahed, N.A.M. Optimization of fermentation conditions for enhancing extracellular production of L-asparaginase, an anti-leukemic agent, by newly isolated Streptomyces brollosae NEAE-115 using solid state fermentation. Ann Microbiol 67, 1–15 (2017). https://doi.org/10.1007/s13213-016-1231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1231-5

Keywords

Navigation