Skip to main content
Log in

Filterable microbial forms in the Rybinsk water reservoir

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Molecular identification of the filterable forms of microorganisms in the water of the Rybinsk reservoir, one of the largest open water bodies in European Russia, was carried out. The number of ultrasmall microbial cells passing through 0.22 μm filters was 104 cells/mL. These were represented by both bacteria and archaea. Most bacterial 16S rRNA gene sequences retrieved from filtered water affiliated with the Betaproteobacteria and exhibited high similarity (99.0–99.5%) to those of bacteria of the genus Polynucleobacter. The archaeal 16S rRNA gene clone library was composed of the sequences from members of the Euryarchaeota, including the orders Methanobacteriales and Methanomicrobiales, as well as two archaeal groups (LDS and RC-V) with no characterized representatives. The species composition of filterable bacteria from reservoir water was different from that revealed previously in bogs and small lakes at catchment areas. By contrast, the pool of filterable archaea in the reservoir exhibited significant similarity to that at boggy catchment areas and was characterized by predominance of the clade LDS. Available data indicate that this archaeal group is typical of the northern freshwater ecosystems, and the organisms of this group are represented by ultrasmall cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rybinskoe vodokhranilishche i ego zhizn’ (Rybinsk Reservoir and Its Life), Leningrad: Nauka, 1972.

  2. Fedotova, A.V., Belova, S.E., Kulichevskaya, I.S., and Dedysh, S.N., Molecular identification of filterable bacteria and archaea in the water of acidic lakes of Northern Russia, Microbiology (Moscow), 2012, vol. 81, no. 3, pp. 281–287.

    Article  CAS  Google Scholar 

  3. Belova, S.E., Fedotova, A.V., and Dedysh, S.N., Prokaryotic ultramicroforms in a Sphagnum peat bog of the Upper Volga catchment, Microbiology (Moscow), 2012, vol. 81, no. 5, pp. 614–620.

    Article  CAS  Google Scholar 

  4. Glissman, K., Chin, K.-J., Casper, P., and Conrad, R., Methanogenic pathway and archaeal community structure in the sediment of eutrophic lake Dagow: effect of temperature, FEMS Microbiol. Ecol., 2004, vol. 48, pp. 389–399.

    Article  CAS  Google Scholar 

  5. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, pp. 697–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Großkopf, R., Janssen, P.H., and Liesack, W., Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval, Appl. Environ. Microbiol., 1998, vol. 64, pp. 960–969.

    PubMed Central  PubMed  Google Scholar 

  7. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., and Weber, C.F., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 2009, vol. 75, pp. 7537–7541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pruesse, E., Peplies, J., and Glockner, F.O., SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Opens external link in new window, Bioinformatics, 2012, vol. 28, pp. 1823–1829.

    Article  CAS  PubMed  Google Scholar 

  9. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glockner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Opens external link in new window, Nucleic Acids Res., 2013, vol. 41(D1), pp. D590–D596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Romanenko, V.I., Total numbers of bacteria in the Rybinsk reservoir, Mikrobiologiya, 1971, vol. 40, pp. 707–713.

    CAS  Google Scholar 

  11. Wang, Y., Hammes, F., Boon, N., and Egli, T., Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 μm pore size filters and shape-dependent enrichment of filterable bacterial communities, Environ. Sci. Technol., 2007, vol. 41, pp. 7080–7086.

    Article  CAS  PubMed  Google Scholar 

  12. Koch, A.L., What size should a bacterium be? A question of scale, Annu. Rev. Microbiol., 1997, vol. 50, pp. 317–348.

    Article  Google Scholar 

  13. Maniloff, J., Nannobacteria: size limits and evidence, Science, 1997, vol. 276, p. 1776.

    Article  CAS  PubMed  Google Scholar 

  14. Psenner, R. and Loferer, M., Nannobacteria: size limits and evidence, Science, 1997, vol. 276, pp. 1776–1777.

    CAS  PubMed  Google Scholar 

  15. Hahn, M.W., Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones, Appl. Environ. Microbiol., 2003, vol. 69, pp. 5248–5254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hahn, M.W., Lang, E., Brandt, U., Wu, Q.L., and Scheuerl, T., Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2002–2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang, Y., Hammes, F., Boon, N., Chami, M., and Egli, T., Isolation and characterization of low nucleic acid (LNA)-content bacteria, ISME J., 2009, vol. 3, pp. 889–902.

    Article  CAS  PubMed  Google Scholar 

  18. Hahn, M.W., Broad diversity of viable bacteria in ‘sterile’ (0.2 μm) filtered water, Res. Microbiol., 2004, vol. 155, pp. 688–691.

    Article  PubMed  Google Scholar 

  19. Hahn, M.W., Scheuerl, T., Jezberova, J., Koll, U., Jezbera, J., Simek, K., Vannini, C., Petroni, G., and Wu, Q.L., The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population, PLoS One, 2012, vol. 7, no. 3, e32772. doi: 101371/journal.pone.0032772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sait, M., Hugenholtz, P., and Janssen, P.H., Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivationindependent surveys, Environ. Microbiol., 2002, vol. 4, pp. 654–666.

    Article  CAS  PubMed  Google Scholar 

  21. Kotelnikova, S., Macario, A.J.L., and Pedersen, K., Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater, Int. J. Syst. Evol. Microbiol., 1998, vol. 48, pp. 357–367.

    Google Scholar 

  22. Bräuer, S.L., Cadillo-Quiroz, H., Ward, R.J., Yavitt, J.B., and Zinder, S., Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 45–52.

    Article  PubMed  Google Scholar 

  23. Barberán, A., Fernández-Guerra, A., Auguet, J.-C., Galand, P., and Casamayor, E.O., Phylogenetic ecology of widespread uncultured clades of the kingdom Euryarchaeota, Mol. Ecol., 2011, vol. 20, pp. 1988–1996.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Dedysh.

Additional information

Original Russian Text © A.V. Fedotova, Yu.M. Serkebaeva, V.V. Sorokin, S.N. Dedysh, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 6, pp. 715–722.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotova, A.V., Serkebaeva, Y.M., Sorokin, V.V. et al. Filterable microbial forms in the Rybinsk water reservoir. Microbiology 82, 728–734 (2013). https://doi.org/10.1134/S0026261713060052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713060052

Keywords

Navigation