Skip to main content
Log in

Methanotrophic bacteria in cold seeps of the floodplains of northern rivers

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are potentially important (although poorly studied) sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3–5°C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with prevalence of type I methanotrophs. Among the latter, microorganisms related to Methylobacter psychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two methanotrophic isolates were determined. Methylobacter sp. CMS7 exhibited active growth at 4–10°C, while Methylocystis sp. SB12 grew better at 20°C. Experimental results confirmed the major role of methanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karol’, I.L., Assessment of the relative contribution of greenhouse gases to global warming, Meteorol. Gidrol., 1996, vol. 11, pp. 5–12.

    Google Scholar 

  2. Stepanenko, V.M., Machul’skaya, E.E., Glagolev, M.V., and Lykosov, V.N., Numerical modeling of methane emissions from lakes in the permafrost zone, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 2, pp. 252–268.

    Article  Google Scholar 

  3. Etiope, G., Lassey, K.R., Klusman, R.W., and Boschi, E., Reappraisal of the fossil methane budget and related emission from geologic sources, Geophys. Rev. Lett., 2008, vol. 35, L09307, doi: 10.1029/ 2008GL033623

    Article  Google Scholar 

  4. Etiope, G. and Klusman, R.W., Geologic emissions of methane to the atmosphere, Chemosphere, 2002, vol. 49, pp. 777–789.

    Article  CAS  PubMed  Google Scholar 

  5. Kovalevskii, S.A., Gryazevye vulkany yuzhnogo Prikaspiya (Mud Volcanoes of Southern Caspian Area), Baku: AZGOSTOPTEKhIZDAT, 1940.

    Google Scholar 

  6. Kopf, A.J., Global methane emission through mud volcanoes and its past and present impact on the Earth’s climate, Int. J. Earth Sci. (Geol. Rundsch.), 2003, vol. 92, pp. 806–816. doi: 10.1007/s00531-003-0341-z

    Article  CAS  Google Scholar 

  7. Kopf, A.J., Global methane emission through mud volcanoes and its past and present impact on earth climate, Int. J. Earth Sci. (Geol. Rundsch.), 2005, vol. 94, pp. 493–494. doi: 10.1007/s00531-005-0505-0

    Article  CAS  Google Scholar 

  8. Milkov, A.V. and Etiope, G., Global methane emission through mud volcanoes and its past and present impact on the Earth’s climate-a comment, Int. J. Earth Sci. (Geol. Rundsch.), 2005, vol. 94, pp. 490–492. doi: 10.1007/s00531-005-0480-5

    Article  CAS  Google Scholar 

  9. Etiope, G., Natural emissions of methane from geological seepage in Europe, Atmos. Environ., 2009, vol. 43, pp. 1430–1443.

    Article  CAS  Google Scholar 

  10. Anthony, K.M.W., Anthony, P., Grosse, G., and Chanton, J., Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers, Nature Geosci., 2012, vol. 5, pp. 419–426. doi: 10.1038/ngeo1480

    Article  Google Scholar 

  11. Glagolev, M., Maksyutov, S., Oshkin, I., Kleptsova, I., and Dedysh, S., Methane emissions from West Siberian mud volcanoes: observations near Khanty-Mansiysk, Amer. Geophys. Union, Fall Meeting 2011, abstract no. GC41C-0826. URL: http://istina.imec.msu.ru/conferences/presentations/576035/ (application date 31.05.2012).

  12. Taran, G.S., Sedel’nikova, N.V., Pisarenko, O.Yu., and Golomolzin, V.V., Flora i rastitel’nost’ Elizarovskogo gosudarstvennogo zakaznika (nizhnyaya Ob’) (Fauna and Plants of the Elizarov State Preserve, Lower Ob’), Novosibirsk: Nauka, 2004.

    Google Scholar 

  13. Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T., Regional methane emission from West Siberia mire landscapes, Environ. Res. Lett., 2011, vol. 6, no. 4, 045214. doi: 10.1088/1748-9326/6/4/045214. Available also at URL:http://iopscience.iop.org/1748-9326/6/4/045214/pdf/1748-9326-6-4-045214.pdf (application date 08.12.2011).

    Article  Google Scholar 

  14. Glagolev, M.V., Sabrekov, A.F., Kleptsova, I.E., Filippov, I.V., Lapshina, E.D., Machida, T., and Maksyutov, Sh.Sh., Methane emission from bogs in the subtaiga of Western Siberia: the development of standard model, Euras. Soil Sci., 2012, vol. 45, no. 10, pp. 947–957. doi: 10.1134/S106422931210002X

    Article  CAS  Google Scholar 

  15. Holmes, A.J., Costello, A., Lidstrom, M.E., and Murrell, J.C., Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related, FEMS Microbiol. Lett., 1995, vol. 132, pp. 203–208.

    Article  CAS  PubMed  Google Scholar 

  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüßmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckman, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K.-H., ARB: a software environment for sequence data, Nucleic Acid Res., 2004, vol. 32, pp. 1363–137

    Article  CAS  PubMed  Google Scholar 

  17. Gal’chenko, V.F., Metanotrofnye bakterii (Methanotrophic Bacteria), Moscow: GEOS, 2001.

    Google Scholar 

  18. Eller, G., Stubner, S., and Frenzel, P., Group specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridization, FEMS Microbiol. Lett., 2001, vol. 198, pp. 91–97.

    Article  CAS  PubMed  Google Scholar 

  19. Pankratov, T.A., Belova, S.E., and Dedysh, S.N., Evaluation of the phylogenetic diversity of prokaryotic microorganisms in Sphagnum peat bogs by means of fluorescence in situ hybridization (FISH), Microbiology (Moscow), 2005, vol. 74, no. 6, pp. 722–728.

    Article  CAS  Google Scholar 

  20. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, pp. 697–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Glagolev, M.V., Golovatskaya, E.A., and Shnyrev, N.A., Greenhouse gas emission in West Siberia, Contemp. Probl. Ecol., 2008, vol. 1, pp. 136–146. doi: 10.1134/S1995425508010165

    Google Scholar 

  22. Kim, H.-S., Maksyutov, S., Glagolev, M.V., Machida, T., Patra, P.K., Sudo, K., and Inoue, G., Evaluation of methane emissions from West Siberian wetlands based on inverse modeling, Environ. Res. Lett., 2011, vol. 6, no. 3, 035201. doi: 10.1088/ 1748-9326/6/3/035201. Also available at URL http://iopscience.iop.org/1748-9326/6/3/035201/pdf/1748-9326-6-3-035201.pdf (Application date 02.09.2011).

    Article  Google Scholar 

  23. Omel’chenko, M.V., Vasil’eva, L.V., Zavarzin, G.A., Savel’eva, N.D., Lysenko, A.M., Mityushina, L.L., Khmelenina, V.N., and Trotsenko, Yu.A., A novel psychrophilic methanotroph of the genus Methylobacter, Microbiology (Moscow), 1996, vol. 65, no. 3, pp. 339–343.

    Google Scholar 

  24. Wartiainen, I., Hestnes, A.G., McDonald, I., and Svenning, M.M., Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N), Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 109–113.

    Article  CAS  PubMed  Google Scholar 

  25. Dedysh, S.N., Belova, S.E., Bodelier, P.L.E., Smirnova, K.V., Khmelenina, V.N., Chidthaisong, A., Trotsenko, Y.A., Liesack, W., and Dunfield, P.F., Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing “signature” fatty acids of type I methanotrophs, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 472–479.

    Article  CAS  PubMed  Google Scholar 

  26. Wartiainen, I., Hestnes, A.G., McDonald, I., and Svenning, M.M., Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N), Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 541–547.

    Article  CAS  PubMed  Google Scholar 

  27. Stoecker, K., Bendinger, B., Schöning, B., Nielsen, P.H., Nielsen, J.L., Baranyi, C., Toenshoff, E.R., Daims, H., and Wagner, M., Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 7, pp. 2363–2367.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Dedysh.

Additional information

Original Russian Text © S.E. Belova, I.Yu. Oshkin, M.V. Glagolev, E.D. Lapshina, Sh.Sh. Maksyutov, S.N. Dedysh, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 6, pp. 732–740.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belova, S.E., Oshkin, I.Y., Glagolev, M.V. et al. Methanotrophic bacteria in cold seeps of the floodplains of northern rivers. Microbiology 82, 743–750 (2013). https://doi.org/10.1134/S0026261713060040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713060040

Keywords

Navigation