Skip to main content
Log in

Effective PCR detection of vegetative and dormant bacterial cells due to a unified method for preparation of template DNA encased within cell envelopes

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The unified method of template preparation for PCR in the form of DNA covered by permeabilized cell envelopes was used for the cells of different physiological status (vegetative, dormant forms of different types, and nonviable micromummies). The procedure for the preparation of template DNA included one-stage (boiling in a buffer with chaotropic salts) or two-stage (boiling in a buffer with chaotropic salts followed by treatment with proteinase K) sample preparation. The proposed method proved effective for detection of not only vegetative cells but also of the bacillary spores and the cystlike dormant cells (CLC) of non-spore-forming bacteria. For example, the two-stage sample preparation of Bacillus cereus spores resulted in the PCR sensitivity increase up to the detection level of 3–30 spores per sample; the one-stage sample preparation was three orders of magnitude less efficient (104 spores per sample). An increase in the sensitivity of PCR detection (4–10-fold) owing to the use of the two-stage sample preparation was shown for bacillary, staphylococcal, and mycobacterial CLC. The possibility of PCR detection of staphylococcal micromummies with irreversibly lost viability, which were therefore undetectable by plating techniques, was also demonstrated. The application of the unified sample preparation method ensuring efficacious PCR detection of bacterial cells, irrespective of their physiological state, may be a promising approach to more complete detection of microbial diversity and the overall insemination of natural substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amman, R.I., Ludwig, W., and Schleifer, K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microb. Rev., 1995, vol. 59, no. 1, pp. 143–169.

    Google Scholar 

  2. Mulyukin, A.L., Lusta, K.A., Gryaznova, M.N., Kozlova, A.N., Duzha, M.V., Duda, V.I., and El’-Registan, G.I., Formation of resting cells by Bacillus cereus and Micrococcus luteus, Microbiology, 1996, vol. 65, no. 6, pp. 683–689.

    Google Scholar 

  3. Mulyukin, A.L., Suzina, N.E., Pogorelova, A. Yu., Antonyuk, L. P., Duda, V.I., and El-Registan, G.I., Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense, Microbiology, 2009, vol. 78, no. 1, pp. 33–41.

    Article  CAS  Google Scholar 

  4. Mulyukin, A.L., Kudykina, Yu.K., Shleeva, M.O., Anuchin, A.M., Suzina, N.E., Danilevich, V.N., Duda, V.I., Kaprelyants, A.S., and El-Registan G.I., Intraspecies diversity of dormant forms of Mycobacterium smegmatis, Microbiology, 2010, vol. 79, no. 4, pp. 461–471.

    Article  CAS  Google Scholar 

  5. Demkina, E.V., Soina, V.S., El’-Registan, G.I., and Zvyagintsev, D.G., Reproductive resting forms of Arthrobacter globiformis, Microbiology, 2000, vol. 69, no. 3, pp. 309–313.

    Article  CAS  Google Scholar 

  6. Gardun≈o, R.A., Gardun≈o, E., Hiltz, M., and Hoffman P.S., Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms, Infect. Immun., 2002, vol. 70, pp. 6273–6283.

    Article  Google Scholar 

  7. Suzina, N.E., Mulyukin, A.L., Kozlova, A.N., Shorokhova, A.P., Dmitriev, V.V., Barinova, E.S., Mokhova, O.N., El’-Registan, G.I., and Duda, V.I., Ultrastructure of resting cells of some non-spore-forming bacteria, Microbiology, 2004, vol. 73, no. 4, pp. 435–447.

    Article  CAS  Google Scholar 

  8. Soina V.S., Mulyukin A.L., Demkina E.V., Vorobyova E.A., El-Registan G.I. The structure of resting microbial populations in soil and subsoil permafrost, Astrobiology, 2004, vol. 4, no. 3, pp. 345–358.

    Article  PubMed  Google Scholar 

  9. Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P., Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction, Appl. Environ. Microbiol., 1992, vol. 58, no. 9, pp. 2717–2722.

    PubMed  CAS  Google Scholar 

  10. Miller, D.N., Bryant, J.E., Madsen, E.L., and Ghiorse, W.C., Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples, Appl. Environ. Microbiol., 1999, vol. 65, no. 11, pp. 4715–4724.

    PubMed  CAS  Google Scholar 

  11. Danilevich, V.N. and Grishin E.V., A new approach to the isolation of genomic DNA from yeast and fungi: preparation of DNA-containing cell envelopes and their use in PCR, Russ. J. Bioorg. Chem., vol. 28, vol. 2, pp. 136–146.

  12. Makino, S. and Cheun, H.I., Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores, J. Microbiol. Meth., 2003, vol. 53, no. 2, pp. 141–147.

    Article  CAS  Google Scholar 

  13. Nicholson, W.L. and Setlow, P., Dramatic Increase in Negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis, J. Bacteriol., 1990, vol. 172, no. 1, pp. 7–14.

    PubMed  CAS  Google Scholar 

  14. D’Alessandro, B., Antúnez, K., Piccini, C., and Zunino, P., DNA Extraction and PCR detection of Paenibacillus larvae spores from naturally contaminated honey and bees using spore-decoating and freeze-thawing techniques, World J. Microbiol. Biotechnol., 2007, vol. 23, pp. 593–597.

    Article  Google Scholar 

  15. Ryba, S., Titera, D., Haklova, M., and Stopka, P., A PCR Method of detecting american foulbrood (Paenibacillus larvae) in winter beehive wax debris, Vet. Microbiol., 2009, vol. 39, no. 1–2, pp. 193–196.

    Article  Google Scholar 

  16. Kuske, C.R., Banton, K.L., Adorada, D.L., Stark, P.C., Hill, K.K., and Jackson, P.J., Small-scale DNA sample preparation method for field pcr detection of microbial cells and spores in soil, Appl. Environ. Microbiol., 1998, vol. 64, no. 7, pp. 2463–2472.

    PubMed  CAS  Google Scholar 

  17. Cheun, H.I., Makino, S.-I., Watarai, M., Erdenebaatar, J., Kawamoto, K., and Uchid, I., Rapid and effective detection of anthrax spores in soil by PCR, J. Appl. Microbiol., 2003, vol. 95, no. 4, pp. 728–733.

    Article  PubMed  CAS  Google Scholar 

  18. Danilevich, V.N., Duda, V.I., Suzina, N.E., and Grishin, E.V., Obtaining and characterization of DNA-containing micromummies of yeasts and gram-positive bacteria with enhanced cell wall permeability: application in PCR, Microbiology, 2007, vol. 76, no. 1, pp. 60–69.

    Article  CAS  Google Scholar 

  19. Suzina, N.E., Mulyukin, A.L., Loiko, N.G., Kozlova, A.N., Dmitriev, V.V., Shorokhova, A.P., Gorlenko, V.M., Duda, V.I., and El’-Registan, G.I., Fine structure of mummified cells of microorganisms formed under the influence of a chemical analogue of the anabiosis autoinducer, Microbiology, 2001, vol. 70, no. 6, pp. 667–677.

    Article  CAS  Google Scholar 

  20. Johnson, J.L., Similarity Analysis of RNAs, in Methods for General and Molecular Bacteriology, Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R., Eds., Washington: Amer. Soc. Microbiol., 1994, pp. 683–700.

    Google Scholar 

  21. Schraft, H. and Griffiths, M.W., Specific oligonucleotide primers for detection of lecithinase-positive Bacillus spp. by PCR, Appl. Environ. Microbiol., 1995, vol. 61, no. 6, pp. 98–102.

    PubMed  CAS  Google Scholar 

  22. Gilmore, M.S., Cruz-Rodz, A.L., Leimeister-Wächter, M., Kreft, J., and Goebel, W., A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage, J. Bacteriol., 1989, vol. 171, no. 2, pp. 744–753.

    PubMed  CAS  Google Scholar 

  23. Katayama, H., Mizushima, T., Miki, T., and Sekimizu, K., Molecular cloning and sequence analysis of the dnaA gene of Staphylococcus aureus, Biol. Pharm. Bull., 1997, vol. 20, no. 7, pp. 820–822.

    Article  PubMed  CAS  Google Scholar 

  24. Holden, M.T.G., Feil, E.J., Lindsay, J.A., Peacock, S.J., Day, N.P., Enright, M.C., Foster, T.J., Moore, C.E., Hurst, L., Atkin, R., Barron, A., Bason N., Bentley, S.D., Chillingworth, C., Chillingworth, T., Churcher, C., Clark, L., Corton, C., Cronin, A., Doggett, J., Dowd, L., Feltwell, T., Hance, Z., Harris, B., Hauser, H., Holroyd, S., Jagels, K., James, K.D., Lennard, N., Line, A., Mayes, R., Moule, S., Mungall K., Ormond, D., Quail, M.A., Rabbinowitsch, E., Rutherford, K., Sanders, M., Sharp, S., Simmonds, M., Stevens, K., Whitehead, S., Barrel, l B.G., Spratt, B.G., and Parkhill, J., Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 26, pp. 9786–9791.

    Article  PubMed  CAS  Google Scholar 

  25. Fleischmann, R.D., Dodson, R.J., Haft, D.H., Merkel, J.S., Nelson, W.C., and Fraser, C.M., Mycobacterium smegmatis str. MC2 155, complete genome, Direct Submission to GenBank: CP000480.1 on 2006. Oct.19.

  26. Brennan, P.J. and Nikaido, H., The envelope of mycobacteria, Annu. Rev. Biochem., 1995, vol. 64, pp. 29–63.

    Article  PubMed  CAS  Google Scholar 

  27. http//ribosome.mmg.msu.edu//rrndb

  28. Lara-Reyna, J., Olalda-Portugal, V., and Olmedo-Alvarez, G., An Efficient procedure for the isolation of PCR-competent DNA from Bacillus endospores germinated in soil, World J. Microbiol. Biotechnol., 2000, vol. 16, no. 4, pp. 345–351.

    Article  CAS  Google Scholar 

  29. Ghosh, S. and Setlow, P., Isolation and characterization of superdormant spores of Bacillus species, J. Bacteriol., 2009, vol. 191, no. 6, pp. 1787–1797.

    Article  PubMed  CAS  Google Scholar 

  30. Trnćíková T., Hrušková V., Oravcová K., Pangallo D., Kaclíková E., Rapid and sensitive detection of Staphylococcus aureus in food using selective enrichment and real-time PCR targeting a new gene marker, Food. Anal. Meth., 2009, vol. 2, no. 4, pp. 241–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Mulyukin.

Additional information

Original Russian Text © A.L. Mulyukin, N.E. Suzina, G.I. El’-Registan, V.N. Danilevich, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 3, pp. 300–311.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyukin, A.L., Suzina, N.E., El’-Registan, G.I. et al. Effective PCR detection of vegetative and dormant bacterial cells due to a unified method for preparation of template DNA encased within cell envelopes. Microbiology 82, 295–305 (2013). https://doi.org/10.1134/S0026261713020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713020100

Keywords

Navigation