Skip to main content

A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification

  • Protocol
  • First Online:
Phytoplasmas

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Most of the molecular diagnostic protocols used for phytoplasmas detection are based on the purification of total nucleic acids and on the use of genomic DNA of the pathogen as the target of amplification. Here we describe a diagnostic approach that, avoiding the purification of nucleic acids and exploiting the amplification of the abundant phytoplasma ribosomal RNA molecules produced during the infectious process, allows reducing the time and the costs necessary for the analysis, without affecting sensitivity and specificity. This is useful in particular when high numbers of analyses are required, as in certification programs, to monitor phytoplasmas classified as quarantine or quality pathogens. The protocol here described can be used for the detection and quantification of Candidatus Phytoplasma mali, Ca. P. pyri, Ca. P. prunorum, Ca. P. vitis, and Ca. P. solani by qPCR, RT-qPCR, ddPCR, and ddRT-PCR techniques based on TaqMan chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gundersen D, Lee I, Schaff D, Harrison N, Chang C, Davis R et al (1996) Genomic diversity and differentiation among phytoplasma strains in 16S rRNA groups I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). Int J Syst Bacteriol 46(1):64–75

    Article  CAS  Google Scholar 

  2. Heinrich M, Botti S, Caprara L, Arthofer W, Strommer S, Hanzer V et al (2001) Improved detection methods for fruit tree phytoplasmas. Plant Mol Biol Rep 19:169–179

    Article  CAS  Google Scholar 

  3. Jarausch W, Peccerella T, Schwind N, Jarausch B, Krczal G (2004) Establishment of a quantitative real-time PCR assay for the quantification of apple proliferation phytoplasmas in plants and insects. Acta Horticulturae (657):415–420

    Google Scholar 

  4. Torres E, Bertolini E, Cambra M, Montón C, Martín MP (2005) Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Mol Cell Probes 19:334–340

    Article  CAS  Google Scholar 

  5. Galetto L, Bosco D, Marzachí C (2005) Universal and group-specific real-time PCR diagnosis of Flavescence dorée (16Sr-V), bois noir (16Sr-XII) and apple proliferation (16Sr-X) phytoplasmas from field-collected plant hosts and insect vectors. Ann Appl Biol 147:191–201

    Article  CAS  Google Scholar 

  6. Bianco PA, Casati P, Marziliano N (2004) Detection of phytoplasmas associated with grapevine Flavescence dorée disease using real-time PCR. J Plant Pathol 86:259–264

    Google Scholar 

  7. Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant-Microbe Interact 17:1175–1184

    Article  CAS  Google Scholar 

  8. Hren M, Boben J, Rotter A, Kralj P, Gruden K, Ravnikar M (2007) Real-time PCR detection systems for Flavescence dorée and bois noir phytoplasmas in grapevine: comparison with conventional PCR detection and application in diagnostics. Plant Pathol 56:785–796

    Article  CAS  Google Scholar 

  9. Baric S, Dalla-Via J (2004) A new approach to apple proliferation detection: a highly sensitive real-time PCR assay. J Microbiol Methods 57(1):135–145

    Article  CAS  Google Scholar 

  10. MacKenzie DJ, McLean MA, Mukerji S, Green M (1997) Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction. Plant Dis 81(2):222–226

    Article  CAS  Google Scholar 

  11. Ahrens U, Seemüller E (1992) Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16 S rRNA gene. Phytopathology 2(8):828–832

    Article  Google Scholar 

  12. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116

    Article  CAS  Google Scholar 

  13. La Notte P, Minafra A, Saldarelli P (1997) A spot-PCR technique for the detection of phloem-limited grapevine viruses. J Virol Methods 66(1):103–108

    Article  Google Scholar 

  14. Dovas CI, Katis NI (2003) A spot nested RT-PCR method for the simultaneous detection of members of the Vitivirus and Foveavirus genera in grapevine. J Virol Methods 107(1):99–106

    Article  CAS  Google Scholar 

  15. Margaria P, Turina M, Palmano S (2009) Detection of Flavescence dorée and bois noir phytoplasmas, grapevine leafroll associated virus-1 and-3 and grapevine virus a from the same crude extract by reverse transcription-RealTime Taqman assays. Plant Pathol 58(5):838–845

    Article  Google Scholar 

  16. Bertolini E, Felipe R, Sauer A, Lopes S, Arilla A, Vidal E et al (2014) Tissue-print and squash real-time PCR for direct detection of ‘Candidatus Liberibacter’ species in citrus plants and psyllid vectors. Plant Pathol 63(5):1149–1158

    Article  CAS  Google Scholar 

  17. Osman F, Rowhani A (2006) Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan). J Virol Methods 133(2):130–136

    Article  CAS  Google Scholar 

  18. Margaria P, Rosa C, Marzachi C, Turina M, Palmano S (2007) Detection of Flavescence doree phytoplasma in grapevine by reverse-transcription PCR. Plant Dis 91(11):1496–1501

    Article  CAS  Google Scholar 

  19. Minguzzi S, Terlizzi F, Lanzoni C, Poggi Pollini C, Ratti C (2016) A rapid protocol of crude RNA/DNA extraction for RT-qPCR detection and quantification of “Candidatus phytoplasma prunorum”. PLoS One 11(1):e0146515. https://doi.org/10.1371/journal.pone.0146515

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Ratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ratti, C., Minguzzi, S., Turina, M. (2019). A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification. In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics