Skip to main content
Log in

The strategy of strain selection for a mixed culture performing rapid conversion of a mixture of polyaromatic compounds

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The strain Sphingomonas sp. VKM V-2434 converts the mixture of seven polyaromatic compounds (PACs): fluorene, dibenzothiophene, carbazole, phenanthrene, anthracene, fluoranthene, and pyrene. The effect of each of the above PACs on the rate of mixture conversion was determined. The following two strains, which utilize the substances inhibiting the studied process, were added to the culture: strain FON-11 utilizing 9-fluorenone (fluorene metabolite) and strain CBZ-21 utilizing carbazole. In the case of the mixed culture of three strains, conversion rates were 1.5 and 1.2–3.8 times higher for the PAC mixture and its individual components, respectively, than the rates for Sphingomonas sp. VKM V-2434 monoculture. The degree of degradation of PAC conversion products increased from 32 to 44%. The rate of PAC conversion by the mixed culture exceeded the sum of conversion rates for the individual component strains; this cooperative effect was particularly marked for anthracene and pyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cerniglia, C.E., Biodegradation of Polycyclic Aromatic Hydrocarbons, Biodegradation, 1992, vol. 3, pp. 351–368.

    Article  CAS  Google Scholar 

  2. Bamforth, S.M. and Singleton, I., Bioremediation of Polycyclic Aromatic Hydrocarbons: Current Knowledge and Future Directions. Review, J. Chem. Technol. Biotechnol., 2005, vol. 80, pp. 723–736.

    Article  CAS  Google Scholar 

  3. Stringfellow, W.T. and Aitken, M.D., Competitive Metabolism of Naphthalene, Methylnaphthalene and Fluorene by Phenanthrene-Degrading Pseudomonads, Appl. Environ. Microbiol., 1995, vol. 61, pp. 357–362.

    CAS  PubMed  Google Scholar 

  4. Guha, S., Peters, C.A., and Jaffé, P.R., Multisubstrate Biodegradation Kinetics of Naphthalene, Methyl-naphthalene, and Pyrene Mixtures, Biotech. Bioeng., 1999, vol. 65, pp. 491–499.

    Article  CAS  Google Scholar 

  5. Desai, A.M., Autenrieth, RL., Dimitrou-Christidis, P., and McDonald, T.J., Biodegradation Kinetics of Select Polycyclic Aromatic Hydrocarbon (PAH) Mixtures by Sphingomonas paucimibilis EPA505, Biodegradation, 2008, vol. 19, pp. 223–233.

    Article  CAS  PubMed  Google Scholar 

  6. Casellas, M., Grifoll, M., Sebate, J., and Solanas, A.M., Isolation and Characterization of a Fluorenone-Degrading Bacterial Strain and Its Role in Synergistic Degradation of Fluorene by a Consortium, Can. J. Microbiol., 1998, vol. 44, pp. 734–742.

    Article  CAS  Google Scholar 

  7. Kazunga, S. and Aitken, M. D., Products of Incomplete Metabolism of Pyrene by Polycyclic Aromatic Hydrocarbon-Degrading bacteria, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1917–1922.

    Article  CAS  PubMed  Google Scholar 

  8. Molina, M., Araujo, R, and Hodson, R.E., Cross-Induction of Pyrene and Phenanthrene in a Mycobac-terium sp. Isolated from Polycyclic Aromatic Hydrocarbon Contaminated River Sediments, Can. J. Misrobiol., 1999, vol. 45, pp. 520–529.

    Article  CAS  Google Scholar 

  9. Juhasz, A.L. and Naidu, R., Bioremediation of High Molecular Weight Polycyclic Aromatic Hydrocarbons: a Review of Microbial Degradation of Benzo [a] Pyrene, Int. Biodeteriorati. Biodegradation, 2000, vol. 45, pp. 57–88.

    Article  CAS  Google Scholar 

  10. Bouchez, M., Blanchet, D, and Vandecasteele, J.P., Degradation of Polycyclic Aromatic Hydrocarbons by Pure Strains and Defined Strain Associations: Inhibition Phenomena and Cometabolism, Appl. Microbiol. Biotechnol., 1995, vol. 43, pp. 156–164.

    Article  CAS  PubMed  Google Scholar 

  11. Baboshin, M.A., Akimov, V.N., Baskunov, B.P., Born, T.L., Khan, S.U., and Golovleva, L.A., Conversion of Polycyclic Aromatic Hydrocarbons by Sphingomonas sp. VKM V-2434, Biodegradation, 2008, vol. 19, pp. 567–576.

    Article  CAS  PubMed  Google Scholar 

  12. Kul’skii, L.A., Levchenko, T.M., and Petrova, M.V., Khimiya i mikrobiologiya vody. Practikum (Practical Guide to Water Chemistry and Microbiology), Kiev, Vishcha Shkola, 1976.

    Google Scholar 

  13. Bungay, H.R. and Bungay, M.L., Microbial Interactions in Continuous Culture, Adv. Appl. Microbio l., 1968, vol. 10, pp. 269–290.

    Article  Google Scholar 

  14. Pechurkin, N.S., Populyatsionnaya mikrobiologiya (Population Microbiology), Novosibirsk: Nauka Sibirskoe otdelenie, 1978.

    Google Scholar 

  15. Bastiaens, L., Springael, D., Wattiau, P., Harms, H., de Wachter, R., Werachtert, H., and Diels, L., Isolation of Adherent Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Bacteria Using PAH-Sorbing Carriers, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1834–1843.

    Article  CAS  PubMed  Google Scholar 

  16. Odum, Yu., Fundamentals of Ecology, Philadelphia: Saunders, 1971 [Russ. Transl. Moscow: Mir, 1975].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baboshin.

Additional information

Original Russian Text © M.A. Baboshin, L.A. Golovleva, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 1, pp. 79–88.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baboshin, M.A., Golovleva, L.A. The strategy of strain selection for a mixed culture performing rapid conversion of a mixture of polyaromatic compounds. Microbiology 79, 73–82 (2010). https://doi.org/10.1134/S0026261710010108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710010108

Key words

Navigation