Skip to main content
Log in

Xylotrophic and mycophilic bacteria in formation of dystrophic waters

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The microbial communities developing in ultrafresh stagnant water originating from rainfall comprise the group of ombrophiles. The microorganisms of the myco-bacterial community developing on coarse woody debris are involved in formation of humus-enriched dystrophic waters in the watersheds of forested wetlands. Oligotrophic acidophilic dissipotrophs participate in the transformation of organic matter in such waters. The scheme of trophic interactions in the microbial community is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moiseenko, T.I., Zakislenie vod: faktory, mekhanizmy i ekologicheskie posledstviya (Water Acidification: Factors, Mechanisms, and Ecological Consequences), Moscow: Nauka, 2003.

    Google Scholar 

  2. Zavarzin, G.A., A Planet of Bacteria, Vestnik Ross. Akad. Nauk, 2008, vol. 78, pp. 328–345 [Herald Rus. Acad. Sci. (Engl. Transl.), vol. 78, no. 2, pp. 144–151].

    CAS  Google Scholar 

  3. Zavarzin, G.A., Dedysh, S.N., and Vasil’eva, L.V., Changes in Natural Waters Caused by Microbial Activity, in Izmenenie okruzhayushchei sredy i klimata: prirodnye i svyazannye s nimi tekhnogennye katastrofy (Environmental and Climatic Changes: Natural Catastrophs), Laverov, N.P., Ed., vol. 4, 2008 (in press).

  4. Zavarzin, G.A. and Kudeyarov, V.N., Processes in the Biosphere: changes in Russian Soil, Vegetable Cover, and Territorial Waters, in Izmenenie okruzhayushchei sredy i klimata: prirodnye i svyazannye s nimi tekhnogennye katastrofy (Environmental and Climatic Changes: Natural Catastrophs), Laverov, N.P., Ed., vol. 4, 2008 (in press).

  5. Dobrovol’skaya, T.G., Struktura bakterial’nykh soobshchestv pochv (Structure of Bacterial Communities in Soil), Moscow: Akademkniga, 2002.

    Google Scholar 

  6. Rydin, H., Gunnarsson, U., and Sundberg, S., The Role of Sphagnum in Peatland Development and Persistence, in Ecological Studies, vol. 188, Boreal Peatland Ecosystems, Wieder, R.K. and Vitt, D.H., Eds., Berlin: Springer, 2006, pp. 47–65.

    Chapter  Google Scholar 

  7. Dedysh, S.N., Pankratov, T.A., Belova, S.E., Kulichevskaya, I.S., and Liesack, W., Phylogenetic Analysis and in situ Identification of Bacteria Community Composition in an Acidic Sphagnum Peat Bog, Appl. Environ. Microbiol., 2006, vol. 72, pp. 2110–2117.

    Article  PubMed  CAS  Google Scholar 

  8. Zavarzina, A.G., Decomposition of Sphagnum Moss (Simulation Experiment), Vestnik Mosk. Un-Ta, Ser. 17. Soil Sci., 1995, no. 3, pp 52–56.

  9. Vomperskii, S.E., Tsyganov, S.P., Kovalev, A.G., Glukhova, T.V., and Valyaeva, N.A., Swamping in Russia as a Factor of Atmospheric Carbon Binding, in Krugovorot ugleroda na territorii Rossii (Carbon Turnover on the Russian Teritory), Zavarzin, G.A., Ed., Moscow: Izd-vo Min. Obraz. Rossii, 1999, pp. 124–145.

    Google Scholar 

  10. Kudeyarov, V.N., Zavarzin, G.A., Blagodatskii, S.A., Borisov, A.V., Voronin, P.Yu., Demkin, V.A., Demkina, T.S., Evdokimov, I.V., Zamolodchikov, D.G., Karelin, D.V., Komarov, A.S., Kurganova, I.N., Larionova, A.A., Lopes de Gerenyu, V.O., Utkin, A.I., and Chertov, O.G., Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Pools and Flows of Carbon in Russian Terrestrial Ecosystems), Moscow: Nauka, 2007.

    Google Scholar 

  11. Zvyagintsev, D.G. and Zenova, G.M., Ekologiya aktinomitsetov (Ecology of Actinomycetes), Moscow: Geos, 2001.

    Google Scholar 

  12. Osono, T., Ecology of Lignolytic Fungi Associated with Leaf Litter Decomposition, Ecol. Res, 2007, vol. 22, pp. 955–974.

    Article  Google Scholar 

  13. Perel’man, A.I. and Kasimov, N.S., Geokhimiya landshafta (Landscape Geochemistry), Moscow: Astreya-2000, 1999.

    Google Scholar 

  14. Rabinovich, M.L., Bolobova, A.V., and Kondrashchenko, V.I., Teoreticheskie osnovy biotekhnologii drevesnykh kompozitov. Kn. 1. Drevesina i razrushayushchie ee griby (Theoretical Background for Biotechnology of Wood Composites. Book 1. Wood and Wood-Decomposing Fungi), Moscow: Nauka, 2001.

    Google Scholar 

  15. Storozhenko, V.G., Bondartseva, M.A., Solov’ev, V.A., and Krutov, V.I., Nauchnye osnovy ustoichivosti lesov k derevorazrushayushchim gribam (Scientific Basics of Forest Resistance to Wood-Decomposing Fungi), Moscow: Nauka, 1992.

    Google Scholar 

  16. Thormann, M.H., The Role of Fungi in Boreal Peatlands, in Boreal Peatland Ecosystems, Wieder, R.K. and Vitt, D.H., Eds., Berlin: Springer, 2006, pp. 101–123.

    Chapter  Google Scholar 

  17. Buddy, L., Fungal Community Ecology and Wood Decomposition Processes in Angiosperms: from Standing Tree to Complete Decay of Coarse Woody Debris, Ecol. Bull, 2001, vol. 49, pp. 43–56.

    Google Scholar 

  18. Orlov, D.S., Biryukova, O.N., and Sukhanova, N.I., Organicheskoe veshchestvo pochv Rossiiskoi Federatsii (Organic Matter in Soils of the Russian Federation), Moscow: Nauka, 1996.

    Google Scholar 

  19. Limnology of humic waters, Keskitalo, J. and Eloranta, P., Eds., Leiden: Backhuys, 1999.

    Google Scholar 

  20. Klavin, M., Aquatic Humic Substances: Characterization, Structure and Genesis, Riga: Univ. of Latvia, 1997.

    Google Scholar 

  21. Vinogradov, M.E., Romankevich, E.A., Vetrov, A.A., and Vedernikov, V.I., Carbon Cycle in the Russian Arctic Seas, in Krugovorot ugleroda na territorii Rossii (Carbon Turnover on the Russian Territory), Laverov, N.P. and Zavarzin, G.A., Eds., NTP Global Changes in Environment and Climate, Moscow: Gov. of Moscow, 1999, pp. 300–325.

    Google Scholar 

  22. Romankevich, E.A. and Vetrov, A.A., Tsikl ugleroda v arkticheskikh moryakh Rossii (Carbon Cycle in the Arctic Seas), Moscow: Nauka, 2001.

    Google Scholar 

  23. Terekhova, V.A., Mikromitsety v ekologicheskoi otsenke vodnykh i nazemnykh ekosistem (Micromycetes in the Ecological Assessment of Aquatic and Terrestrial Ecosystems), Moscow: Nauka, 2007.

    Google Scholar 

  24. Moore, T. and Baziliko, N., Decomposition in Boreal Peatlands. Ecological Studies, in Boreal Peatland Ecosystems, Wieder, R.K. and Vitt, D.H., Eds., Berlin: Springher, 2006, pp. 125–143.

    Chapter  Google Scholar 

  25. Gamauf, C., Metz, B., and Seiboth, B., Degradation of Plant Cell Wall Polymers by Fungi, in Environmental and Microbial Relationships. Series: The Mycota, vol. 4, Kubicek, C.P. and Druzhinina, I.S., Eds., Berlin: Springer, 2nd ed, 2007.

    Google Scholar 

  26. Malherbe, S. and Cloete, T.E., Lignocellulose Biodegradation: Fundamentals and Applications, Rev. Env. Sci. Biotech, 2002, vol. 1, pp. 105–114.

    Article  CAS  Google Scholar 

  27. D’yakov, Yu.T., Shnyreva, A.V., and Sergeev, A.Yu., Vvedenie v genetiku gribov. Ucheb. posobie dlya stud. vyssh. ucheb. zavedenii (Introduction to Genetics of Fungi), Moscow: Izdatel’skii tsentr “Akademiya”, 2005.

    Google Scholar 

  28. Alekseev, V.A. and Berdsi, R.A., Uglerod v ekosistemakh lesov i bolot Rossii (Carbon in the Ecosystems of Forests and Bogs in Russia), Krasnoyarsk: VTs SO RAN, 1994.

    Google Scholar 

  29. Belozerskaya, T.A. and Gessler, N.N., Oxidative Stress and Fungal Differentaition, in Mikologiya segodnya (Mycology Today), D’yakov, Yu.T. and Sergeeva, Yu.V., Eds., Moscow: Nat. Acad. Mycol., 2007, vol. 1, p. 30.

    Google Scholar 

  30. Tanaka, H., Itakura, S., and Enoki, A., Hydroxyl Radical Generation by an Extrcellular Low Molecular-Weight Substance and Phenol-Oxidase Activity During Wood Degradation by the White-Rot Basidiomycetes Trametes versicolor, J. Biotechnol., 1999, vol. 75, pp. 57–70.

    Article  PubMed  CAS  Google Scholar 

  31. Sizova, T.P., Deuteromycetes, Saprotrophs on Wood and Plant Debris, in Mir rastenii, t. 2, Griby, (World of Plants, vol. 2. Fungi), Takhtajan, A.L., Ed., Moscow: Prosveshchenie, 1991, pp. 432–433.

    Google Scholar 

  32. Kosikova, B. and Slavikova, E., Biotransformation of Lignin Polymers Derived from Beech Wood Pulping by Sporobolomyces roseus Isolated from Leafy Material, Biotechnol. Lett., 2004, vol. 26, pp. 517–519.

    Article  PubMed  CAS  Google Scholar 

  33. Orlov, D.S., Gumusovye kisloty pochv i obshchaya teoriya gumifikatsii (Soil Humus Acids and a General Theory of Humification), Moscow: Mosk. Gos. Univ., 1990.

    Google Scholar 

  34. Stevenson, F.J., Humus Chemistry: Genesis, Composition, Reactions, New York: Wiley, 1994.

    Google Scholar 

  35. Kononova, M.M., Organicheskoe veshchestvo pochvy. Ego priroda, svoistva i metody izucheniya, (Organic Matter in Soil: Nature, Properties, and Methods of Investigation), Moscow: Akad. Nauk SSSR, 1963.

    Google Scholar 

  36. Zavarzina, A.G., 2006. A Mineral Support and Biotic Catalyst Are Essential in the Formation of Highly Polymeric Soil Humic Substances, Eur. Soil Sci, 2006, vol. 39, no. Suppl. 1, pp. 48–53.

    Article  Google Scholar 

  37. Goodell, B., Brown-Rot Fungal Degradation of Wood: Our Evolving View, ACS Symposium Series. 2003, vol. 845, pp. 97–118.

    Article  CAS  Google Scholar 

  38. Rypazek, V. and Rypačkova, M., Brown Rot of Wood as a Model for Studies of Lignocellulose Humification, Biol. Plantarum (Praha), 1975, vol. 17, pp. 452–457.

    Article  Google Scholar 

  39. Huang, P.M., Abiotic Catalysis, in Handbook of Soil Science, Summer, M.E., Ed., Boca Raton: CRC Press LLC, FL, 200, pp. 303–334.

  40. Rast, D.V., Baumgartner, D., Mayr, C., and Hollenstain, G.O., Cell Wall-Associated Enzymes in Fungi, Phytochemistry, 2003, vol. 64, pp. 339–360.

    Article  PubMed  CAS  Google Scholar 

  41. Feofilova, E.P., Kletochnaya stenka gribov (The Fungal Cell Wall), Moscow: Nauka, 1983.

    Google Scholar 

  42. Sidorova, I.I., Mycophilic Deuteromycetes, in Mir rastenii, t. 2, Griby, (World of Plants, vol. 2. Fungi), Takhtajan, A.L., Ed., Moscow: Prosveshchenie, 1991, pp. 436–441.

    Google Scholar 

  43. Clausen, C.A., Bacterial Associations with Decaying Wood: a Review, Int. Biodet. Biodeg, 1996, vol. 37, pp. 101–107.

    Article  Google Scholar 

  44. Aleksandrova, A.V., Genus Trichoderma, in Novoe v sistematike i nomenklature gribov (News on Fungal Systematics and Nomenclature), D’yakov, Yu.T, and Sergeeva, Yu.V., Eds., Moscow: Nat. Acad. Mycol., 2003, pp. 219–275.

    Google Scholar 

  45. Folman, L.B., Gunnewiek, P.J.A.K., Boddy, L., and de Boer, W., Impact of White-Rot Fungi on Numbers and Community Composition of Bacteria Colonizing Wood from Forest Soil, FEMS Microbiol. Ecol., 2008, vol. 63, pp. 181–191.

    Article  PubMed  CAS  Google Scholar 

  46. Organic acids in aquatic systems, Perdue, E. and Gjessing, T.E., Eds., Chichester: Wiley, 1990.

    Google Scholar 

  47. de Boer, W., Folman, L.B., Summerbell, R.C., and Boddy, L., Living in a Fungal World: Impact of Fungi on Soil Bacterial Niche Development, FEMS Microbiol. Rev., 2005, vol. 29, pp. 795–811.

    Article  PubMed  CAS  Google Scholar 

  48. Lincoln, S.P., Fermor, T.R., and Tindall, B.J., Janthinobacterium agaricidoamnosum sp. nov., a Soft Rot Pathogen of Agaricus bisporus, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1577–1589.

    PubMed  CAS  Google Scholar 

  49. Zavarzin, G.A., Concerning the Concept of Dissipation Microflora in Carbon Turnover, Zh. Obshch. Biol., 1970, vol. 31, p. 386.

    Google Scholar 

  50. Vasil’eva, L.V. and Zavarzin, G.A., Dissiportophs in a Microbial Community, Mikrobiologiya, 1995, vol. 64, pp. 239–244.

    Google Scholar 

  51. Tranvik, L.J., Availability of Dissolved Organic-Carbon for Planktonic Bacteria in Oligotrophic Lakes of Differing Humic Content, Microb. Ecol., 1988, vol. 16, pp. 311–322.

    Article  CAS  Google Scholar 

  52. Axmanová, S., Koutny, J., Coupalová, J., and Rulik, M., Bacterial Growth and Community Composition in Fractions of Dissolved Organic Carbon of Different Molar Mass from Interstitial Water, Folia Microbol., 2006, vol. 51, pp. 439–444.

    Article  Google Scholar 

  53. Bengtsson, G. and Törnemann, N., Dissolved Organic Carbon Dynamics in the Peat-Streamwater Interface, Biogeochemistry, 2004, vol. 70, pp. 93–116.

    Article  CAS  Google Scholar 

  54. Filip, Z. and Tesarová, M., Microbial Processing of Humic Substances from Meadow and Forest, in Tree Species Effect on Soils: Implications for Global Change, Binkley, D. and Meyailo, O., Eds., Netherlands: Springer, 2005, pp. 193–212.

    Chapter  Google Scholar 

  55. Amon, R.M.W. and Benner, R., Bacterial Utilization of Different Size Classes of Dissolved Organic Matter, Limnol. Oceanogr., 1996, vol. 41, pp. 41–51.

    Article  CAS  Google Scholar 

  56. Young, K.C., Docherty, K.M., Mourice, P.A., and Bridgham, S.D., Degradation of Surface-Water Dissolved Matter: Influences of DOM Chemical Charactereistics and Microbial Populations, Hydrobiologia, 2005, vol. 539, pp. 1–11.

    Article  CAS  Google Scholar 

  57. Sachse, A., Babenzien, D., Ginzel, G., Gelbrecht, G., and Steinberg, C.E.W., Characterization of Dissolved Organic Carbon (DOC) in a Dystrophic Lake and Adjusted Fen, Biogeochem., 2001, vol. 54, pp. 279–296.

    Article  CAS  Google Scholar 

  58. Kalbitz, K., Schwesig, D., Schmerwitz, J., Kaiser, K., Haumaier, L., Glaser, B., Ellerbrock, R., and Leinweber, P., Changes in Properties of Soil-Derived Organic Matter Induced by Biodegradation, Soil Biol. Biochem., 2003, vol. 35, pp. 1129–1142.

    Article  CAS  Google Scholar 

  59. Thurman, E.M., Classification of Dissolved Organic Carbon, in Organic Geochemistry of Natural Waters, Dordrecht: Martinus Nijhoff and Dr. W. Junk, 1985, pp. 103–112.

    Google Scholar 

  60. Obernosterer, I. and Benner, R., Competition Between Biological and Photochemical Processes in the Mineralization of Dissolved Organic Carbon, Limnol. Oceanogr., 2004, vol. 49, pp. 117–124.

    CAS  Google Scholar 

  61. Tranvik, L.J. and Bertilsson, S., Contrasting Effects of Solar UV Radiation on Dissolved Organic Sources for Bacterial Growth, Ecol. Lett, 2001, vol. 4, pp. 458–463.

    Article  Google Scholar 

  62. Perfil’ev, B.V. and Gabe, D.R., Kapillyarnye metody izucheniya mikroorganizmov (Capillary Techniques for Investigation of Microorganisms), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

  63. Skuja, H, Family Pelonemataceae, in Bergey’s Manual of Determinative Bacteriology, Buchanan, R.E. and Gibbons, N.E., Eds., Baltimore: Williams & Wilkins, 8th ed., 1974, pp. 122–127.

    Google Scholar 

  64. Hirsch, P, The Family Pelonemataceae, in The Prokaryotes, Starr, M.P., Stolp, H., Truper, H.G., Balows, A., and Schlegel, H.G., Eds., Berlin: Springer, 1981.

    Google Scholar 

  65. Pringsheim, S.G., Farblose Algen, Jena: VEB Gustav Fischer, 1963.

    Google Scholar 

  66. Ecology of Humic Substances in Fresh Waters, Steinberg, C.E.W., Ed., Berlin: Springer, 2003, p. 429.

    Google Scholar 

  67. Steinberg, C.E.W., Meinelt, T., Timofeyev, M.F., Bittner, M., and Menzel, R., Humic Substances (Review Series). Part 2: Interaction with Organisms, Env. Sci. Pollut. Res, 2008, vol. 15, pp. 128–135.

    Article  Google Scholar 

  68. Judd, K.E., Crump, B.C., and Kling, G.W., Bacterial Responses in Activity and Community Composition to Photo-Oxidation of Dissolved Organic Matter from Soil and Surface Waters, Aquat. Sci, 2007, vol. 69, pp. 96–107.

    Article  CAS  Google Scholar 

  69. Coates, J.D., Cole, K.A., Chakraborty, R., O’Connor, S., and Achenbach, L.A., Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Microbial Respiration, Appl. Environ. Microbiol., 2002, pp. 2445–2452.

  70. Lovley, D.R., Fraga, J.L., Coates, J.D., and Blunt-Harris, E.L., Humics as an Electron Donor for Anaerobic Respiration, Environ. Microb., 1999, vol. 1, pp. 89–98.

    Article  CAS  Google Scholar 

  71. Luider, C., Petticrew, E., and Curtis, P.J., Scavenging of Dissolved Organic Matter (DOM) by Amorphous Iron Hydroxide Particles Fe(OH)3S, Hydrobiologia, 2003, vol. 494, pp. 37–41.

    Article  CAS  Google Scholar 

  72. Liu, Y-Su. and Ramsay, J.A., Review: Microbial Mechanisms Accessing Insoluble Fe(III) as Energy Source, World J. Microbial Biotechnol., 2003, vol. 19, pp. 215–225.

    Article  CAS  Google Scholar 

  73. Avena, M.F. and Koopal, L.K., Kinetics of Humic Acid Adsorption at Solid-Water Interfaces, Environ. Sci. Tech., 1999, vol. 33, pp. 2739–2744.

    Article  CAS  Google Scholar 

  74. van Bodegam, P.M., Broekman, R., van Dijk, J., Bakker, Ch., and Aerts, P., Ferrous Iron Stimulates Phenoloxidase Activity and Organic Matter Decomposition in Waterlogged Wetlands, Biogeochemistry, 2005, vol. 76, pp. 69–83.

    Article  CAS  Google Scholar 

  75. Zavarzin, G.A., Budding Bacteria, Mikrobiologiya, 1961, vol. 30, pp. 952–953.

    CAS  Google Scholar 

  76. Hirsch, P., Muller, M., and Schlessner, H., New Aquatic Budding and Prosthecate Bacteria and Their Taxonomic Position, in Aquatic Microbiology, Skinner and Shewan, Eds. London: Academic, 1978, pp. 107–133.

    Google Scholar 

  77. Hirsch, P. and Rheinheimer, G., Biology of Budding Bacteria. V. Budding Bacteria in Aquatic Habitats: Occurrence, Enrichment and Isolation, Arch. Microbiol., 1968, vol. 62, pp. 289–306.

    CAS  Google Scholar 

  78. Staley, J.T and Fuerst, J.A, Budding and/or Appendaged Bacteria, in Bergey’s Manual of Determinative Bacteriology. P. 1890–1991. V. 3, Staley, J.T., Ed., Baltimore: Williams & Wilkins, 1989.

    Google Scholar 

  79. Nikitin, D.I., Vasil’eva, L.V., and Lokhmacheva, R.A., Novye i redkie formy pochvennykh mikroorganizmov (New and Rare Species of Soil Microorganisms), Moscow: Nauka, 1966.

    Google Scholar 

  80. Kulichevskaya, I.S., Zaichikova, M.V., Detkova, E.N., Dedysh, S.N., and Zavarzin, G.A., Larkinella arboricola sp. nov., a New Species of Spiral-Forming Bacteria of the Family Spirosomaceae from a Bacterial Community of Decomposing Wood, Mikrobiologiya (in press).

  81. Kulichevskaya, I.S., Ivanova, A.O., Belova, S.E., Baulina, O.I., Bodelier, P.L.E., Rijpstra, W.I.C., Sinninghe, DamsteJ.S., Zavarzin, G.A., and Dedysh, S.N., Schlesneria paludicola gen. nov., sp. nov., the First Acidophilic Member of the Order Planctomycetales from Sphagnum-Dominated Boreal Wetlands, Int. J. Syst. Evol. Microbiol., 2007, vol. 57 P, pp. 2680–2687.

    Article  CAS  Google Scholar 

  82. Elshahed, M.S., Youseff, N.H., Spain, A.M., Sheik, C., Najar, F.Z., Sukharnikov, L.O., Roe, B.A., Davis, J.P., Schloss, P.D., Bailey V.L., and Krumholz, L.R., Novelty and Uniqueness of Rare Members of the Soil Biosphere, Appl. Environ. Microbiol., 2008, vol. 74, pp. 5422–5428.

    Article  PubMed  CAS  Google Scholar 

  83. Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.A., and Herndl, G.H., Microbial Diversity in the Deep Sea and Underexplored “Rare Biosphere”, Proc. Nat. Acad. Sci. USA, 2006, vol. 103, pp. 12115–12120.

    Article  PubMed  CAS  Google Scholar 

  84. Thienemann, A.F., Leben und Umvelt. Vom Gesamthaushalt der Natur, Hamburg: Rowohet, 1956.

    Google Scholar 

  85. Sahin, N., Oxalotrophic Bacteria, Res. Microbiol., 2003, vol. 154, pp. 399–407.

    Article  PubMed  CAS  Google Scholar 

  86. Freeman, C., Ostle, N.J., Fenner, N., and Kang, H., A Regulatory Role for Phenol Oxidase During Decomposition in Peatlands, Soil Biol. Biochem., 2004, vol. 36, pp. 1663–1667.

    Article  CAS  Google Scholar 

  87. Ander, P. and Eriksson, K.-E., Methanol Formation During Lignin Degradation by Phanerochaaete chrysosporum, Appl. Microbiol. Biotechnol., 1985, vol. 21, pp. 96–102.

    Article  CAS  Google Scholar 

  88. Kulichevskaya, I.S., Pankratov, T.A., and Dedysh, S.N., Detection of Representatives of the Planctomycetes in Sphagnum Peat Bogs by Molecular and Cultivation Approaches, Mikrobiologiya, 2006, vol. 75, no. 3, pp. 389–396 [Microbiology (Engl. Transl.), vol. 75, no. 3, pp. 329–335].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zavarzina.

Additional information

Original Russian Text © G.A. Zavarzin, A.G. Zavarzina, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 5, pp. 579–591.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavarzin, G.A., Zavarzina, A.G. Xylotrophic and mycophilic bacteria in formation of dystrophic waters. Microbiology 78, 523–534 (2009). https://doi.org/10.1134/S0026261709050014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709050014

Key words

Navigation