Skip to main content
Log in

The effect of earthworms on the physiological state of the microbial community at vermicomposting

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The effect of earthworms on the microbial community of composts and vermicomposts was assayed by the following parameters: mineralization activity, the levels of physiologically active and growing microbial biomass, the requirement for growth factors, and the spectrum of assimilation of organic substrates by the microbial community. The substrate affinities of microbial enzyme systems in vermicompost were found to be lower than in compost without earthworms, which is evidence of a higher amount of r-strategists in the microbial community of vermicomposts. Physiologically active biomass of microorganisms is higher in peat-based vermicompost than in compost. The microorganisms of vermicomposts and composts experience deficiency in growth factors to a lesser extent than the microorganisms in soil. The presence of earthworms influences the physiological diversity: the Shannon index increases or decreases depending on the type of composted substrate and incubation time. The growth rate of microorganisms increases on various test substrates in the presence of worms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards, C.A, Soil Invertebrate Controls an Microbial Interaction in Nutrient and Organic Matter Dynamics in Natural and Agroecosystems, in Invertebrates as Webmasters in Ecosystems, Coleman, D.C. and Hendrix, P.F., Eds., CABI, 2000, pp. 115–140.

  2. Vivas, A., Moreno, B., Garcia-Rodriguez, S., and Benitez, E., Assessing the Impact of Composting and Vermicomposting on Bacterial Community Size and Structure, and Microbial Functional Diversity of an Olive-Mill Waste, Bioresource Technol., 2009, vol. 100, pp. 1319–1326.

    Article  CAS  Google Scholar 

  3. Anastasi, A., Varese, G.C., and Marchisio, V.F., Isolation and Identification of Fungal Communities in Compost and Vermicompost, Mycologia, 2005, vol. 97, no. 1, pp. 33–44.

    Article  PubMed  Google Scholar 

  4. Pramani, K.P., Ghosh, G.K., Ghosal, P.K., and Bani, K.P., Changes in Organic — C, N, P and K and Enzyme Activities in Vermicompost of Biodegradable Organic Wastes Under Liming and Microbial Inoculants, Bioresource Technol., 2007, vol. 98, no. 13, pp. 2485–2494.

    Article  CAS  Google Scholar 

  5. Devliegher, W. and Verstraete, W., Lumbricus terrestris in a Soil Core Experiment: Nutrient-Enrichment Processes (NEP) and Gut-Associated Processes (GAP) and Their Effect on Microbial Biomass and Microbial Activity, Soil Biol. Biochem., 1995, vol. 27, pp. 573–580.

    Article  Google Scholar 

  6. Panikov, N.S., Kinetika rosta mikroorganizmov (Kinetics of Microbial Growth), Moscow: Nauka, 1990.

    Google Scholar 

  7. Anderson, T.-Y. and Gray, T.R.G., Soil Microbial Carbon Uptake Characteristics in Relation to Soil Management, FEMS Microbiol. Ecol., 1990, vol. 74, no. 1, pp. 11–20.

    Article  CAS  Google Scholar 

  8. Blagodatskii, S.A., Blagodatskaya, E.V., and Rozanova, L.N., Kinetics and Growth Strategy of Microorganisms in Chernozem Soil after Prolonged Application of Different Fertilizing Systems, Mikrobiologiya, 1994, vol. 63, no. 2, pp. 298–307.

    Google Scholar 

  9. Blagodatskaya, E.V., Ermolaev, F.M., and Myakshina, T.N., Ecological Strategies of Soil Microbial Communities under Plants of Meadow Ecosystems, Izv. Akad. Nauk, Ser. Biologicheskaya., 2004, no. 6, pp. 740–748 [Biol. Bull. (Engl. Transl.), vol. 31, no. 6, pp. 620–627].

  10. Tereshchenko, N.N., Ekologo-mikrobiologicheskie aspekty vermikompostirovaniya (Ecologo-Microbiological Aspects of Vermicomposting), Novosibirsk: Izd-vo SO RASKhN, 2003.

    Google Scholar 

  11. Wright, R.T. and Hobbie, J.F., Use of Glucose and Acetate by Bacteria and Algae in Aquatic Ecosystems, Ecology, 1966, vol. 47, pp. 447–464.

    Article  CAS  Google Scholar 

  12. Sikora, L.J. and McCoy, J.L., Attempts to Determine Available Carbon in Soils, Biol. Fertil. Soils, 1990, vol. 9, no. 1, pp. 19–24.

    Article  CAS  Google Scholar 

  13. Anderson, J.P.E. and Domsch, K.H., A Physiological Method for the Quantative Measurement of Microbial Biomass in Soils, Soil Biol. Biochem., 1978, vol. 10, pp. 215–221.

    Article  CAS  Google Scholar 

  14. Panikov, N.S. and Sizova, M.V., A Kinetic Method for Estimating the Biomass of Microbial Functional Groups in Soil, J. Microbiol. Meth., 1996, vol. 24, pp. 219–230.

    Article  Google Scholar 

  15. Blagodatskaya, E.V., Khokhlova, O.S., Anderson, T.-Kh, and Blagodatskii, S.A., Extractable Microbial DNA Pool and Microbial Activity in Paleosols of Southern Urals, Mikrobiologiya, 2003, vol. 72, no. 6, pp. 847–853 [Microbiology (Engl. Transl.), vol. 72, no. 6, pp. 750–755].

    Google Scholar 

  16. Gorlenko, M.V. and Kozhevin, P.A., Mul’tisubstratnoe testirovanie prirodnykh mikrobnykh soobshchestv (Multisubstrate Testing of Natural Microbial Communities), Moscow: Izd-vo MAKS Press, 2005.

    Google Scholar 

  17. Yakushev, A.V. and Byzov, B.A., Microbiological Characterization of Vermicomposts by the Method of Multisubstrate Testing, Pochvovedenie, 2008, no. 11, pp. 98–104 [Eur. Soil Sci. (Engl. Transl.), no. 11, pp. 1221–1227].

  18. Carrasco-Leteliera, L., Eguren, G., Castineira, C., Parra, O., and Panario, D., Preliminary Study of Prairies Forested with Eucalyptus sp. at the Northwestern Uruguayan Soils, Environ. Pollut., 2004, no. 127, pp. 49–55.

  19. Sanchez-Monedero, M.A., Mondini, C., Cayuela, M.L., Roig, A., Contin, M., and De Nobili, M., Fluorescein Diacetate Hydrolysis, Respiration and Microbial Biomass in Freshly Amended Soil, Biol. Fertil. Soils, 2008, vol. 44, pp. 885–890.

    Article  CAS  Google Scholar 

  20. Svensson, K. and Friberg, H., Changes in Active Microbial Biomass by Earthworms and Grass Amendments in Agricultural Soil, Biol. Fertil. Soils, 2007, vol. 44, pp. 223–228.

    Article  Google Scholar 

  21. Aira, M., Monroy, F., and Dominguez, J., Eisenia fetida (Oligochaeta, Lumbricidae) Activates Fungal Growth, Triggering Cellulose Decomposition During Vermicomposting, Microb. Ecol., 2006, vol. 52, pp. 738–746.

    Article  PubMed  Google Scholar 

  22. Healey, F.P., Slope of the Monod Equation as an Indicator of Advantage in Nutrient Competition, Microb. Ecol., 1980, vol. 5, no. 4, pp. 281–286.

    Article  Google Scholar 

  23. Kovarova-Kovar, K. and Egli, T., Growth Kinetics of Suspended Microbial Cells: from Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics, Microbiol. Mol. Biol. Rev, 1998, vol. 62, no. 3, pp. 646–666.

    PubMed  CAS  Google Scholar 

  24. Blagodatskii, S.A., Bogomolova, I.N., and Blagodatskaya, E.V., Microbial Biomass and Growth Kinetics of Microorganisms in Chernozem Soils under Different Land Use Modes, Mikrobiologiya, 2008, vol. 77, no. 1, pp. 113–120 [Microbiology (Engl. Transl.), vol. 77, no. 1, pp. 99–106].

    CAS  Google Scholar 

  25. Aira, M., Monroy, F., and Dominguez, J., Eisenia fetida (Oligochaeta: Lumbricidae) Modifies the Structure and Physiological Capabilities of Microbial Communities Improving Carbon Mineralization During Vermicomposting of Pig Manure, Microb. Ecol., 2007, vol. 54, pp. 662–671.

    Article  PubMed  Google Scholar 

  26. Sheehan, C., Kirwan, L., Connolly, J., and Bolger, T., The Effects of Earthworm Functional Diversity on Microbial Biomass and the Microbial Community Level Physiological Profile of Soils, Eur. J. Soil Biol., 2008, vol. 44, pp. 65–70.

    Article  Google Scholar 

  27. Atiyeh, R.M., Subler, S., Edwards, C.A., Bachman, G., Metzger, J.D., and Shuster, W., Effects of Vermicompost and Composts on Plant Growth in Horticultural Container Media and Soil, Pedobiologia, 2000, vol. 44, pp. 579–590.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yakushev.

Additional information

Original Russian Text © A.V. Yakushev, S.A. Blagodatsky, B.A. Byzov, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 4, pp. 565–574.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakushev, A.V., Blagodatsky, S.A. & Byzov, B.A. The effect of earthworms on the physiological state of the microbial community at vermicomposting. Microbiology 78, 510–519 (2009). https://doi.org/10.1134/S002626170904016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626170904016X

Key words

Navigation