Skip to main content
Log in

Additional chromosomes in bacteria: Properties and origin

  • Review Papers
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The review considers papers published over the last 15 years that deal with the presence in cells of some bacterial genera and species of a second chromosome that is smaller than the main one (occasionally, of two additional chromosomes). These additional chromosomes differ from the main one in the set of genes and specific features of replication; however, they carry genes vitally important for the bacterium. The role of these chromosomes and their probable origin from megaplasmids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wake, R. and Errington, J., Chromosome Partitioning in Bacteria, Ann. Rev. Genet., 1995, vol. 29, pp. 41–67.

    Article  PubMed  CAS  Google Scholar 

  2. Draper, G. and Gober, J., Bacterial Chromosome Segregation, Annu. Rev. Microbiol., 2002, vol. 56, pp. 567–597.

    Article  PubMed  CAS  Google Scholar 

  3. Prozorov, A.A., The Bacterial Cell Cycle: DNA Replication, Nucleoid Segregation, and Cell Division, Mikrobiologiya, 2005, vol. 74, no. 4, pp. 437–451 [Microbiology (Engl. Transl.), vol. 74, no. 4, pp. 375–387].

    CAS  Google Scholar 

  4. Kolsto, A.-B., Time for a Fresh Look at the Bacterial Chromosome, Trends Microbiol., 1999, vol. 7, no. 2, pp. 223–226.

    Article  PubMed  CAS  Google Scholar 

  5. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., and Ishikava, H., Genome Sequence of the Endocellular Bacterial Symbiont of Aphids Buchnera sp. APS, Nature, 2000, vol. 407, no. 1, pp. 81–86.

    PubMed  CAS  Google Scholar 

  6. Sobral, B., Honeycutt, A.J., Atherly, A., and McCleland, M., Electrophoretic Separation of the Three Rhizobium meliloti Replicons, J. Bacteriol., 1991, vol. 173, no. 10, pp. 5173–5180.

    PubMed  CAS  Google Scholar 

  7. Guo, X., Flores, M., Mavingui, P., Fuentes, S., Hernandes, G., Davila, G., and Palacios, R., Natural Genomic Design in Sinorhizobium meliloti: Novel Genomic Architectures, Genome Res., 2003, vol. 13, pp. 1810–1817.

    PubMed  CAS  Google Scholar 

  8. Suwanto, A. and Kaplan, S., Physical and Genetic Mapping of the Rhodobacter sphaeroides 2.4.1 Genome: Genome Size, Fragment Identification, and Gene Localization, J. Bacteriol., 1989, vol. 171, no. 11, pp. 5840–5849.

    PubMed  CAS  Google Scholar 

  9. Suwanto, A. and Kaplan, S., Physical and Genetic Mapping of the Rhodobacter sphaeroides 2.4.1 Genome: Presence of Two Unique Circular Chromosomes, J. Bacteriol., 1982, vol. 171, no. 11, pp. 5850–5859.

    Google Scholar 

  10. Jumas-Bilak, E., Michaux-Charachon, S., Bourg, G., Ramuz, M., and Allardet-Servent, A., Unconventional Genomic Organization in the Alpha Subgroup of the Proteobacteria, J. Bacteriol., 1998, vol. 180, no. 8, pp. 2749–2755.

    PubMed  CAS  Google Scholar 

  11. Suwanto, A. and Kaplan, S., A Self-Transmissible, Narrow-Host-Range Endogenous Plasmid of Rhodobacter sphaeroides 2.4.1.: Physical Structure, Incompatibility Determinants, Origin of Replication, and Transfer Functions, J. Bacteriol., 1992, vol. 174, no. 4, pp. 1124–1134.

    PubMed  CAS  Google Scholar 

  12. Suwanto, A. and Kaplan, S., Chromosome Transfer in Rhodobacter sphaeroides: Hfr Formation and Genetic Evidence for Two Unique Circular Chromosomes, J. Bacteriol., 1992, vol. 174, no. 4, pp. 1135–1145.

    PubMed  CAS  Google Scholar 

  13. Choudhary, M., Mackenzie, C., Nereng, K., Sodergren, E., Weinstock, G., and Kaplan, S., Multiple Chromosomes in Bacteria: Structure and Function of Chromosome II of Rhodobacter sphaeroides 2.4.1, J. Bacteriol., 1994, vol. 176, no. 24, pp. 7694–7702.

    PubMed  CAS  Google Scholar 

  14. Choundhary, M., Mackenzie, C., Nereng, K., Sodergren, E., Weinstock, G., and Kaplan, S., Low-Resolution Sequencing of Rhodobacter sphaeroides 2.4.1. T: Chromosome II Is a True Chromosome, Microbiology (UK), 1997, vol. 143, no. 10, pp. 3085–3099.

    Article  Google Scholar 

  15. Mackenzie, C., Chondhary, M., Latimer, F., Predki, P., Stilwagen, S., Armitage, J., et al. (42 authors), The Home Stretch, a First Analysis of the Nearly Completed Genome of Rhodobacter sphaeroides 2.4.1, Photosynth. Res., 2001, vol. 70, no. 1, pp. 19–41.

    Article  PubMed  CAS  Google Scholar 

  16. Paulsen, I., Seshardi, R., Nelson, K., Eisen, J., Heidelberg, J., Read, T., Dodson, R., Umayam, L., et al. (35 authors), The Brucella suis Genome Reveals Fundamental Similarities between Animal and Plant Pathogens and Symbionts, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 20, pp. 13148–13153.

    Article  PubMed  CAS  Google Scholar 

  17. Allardet-Servent, A., Garles-Nurit, M.J., Bourg, J., Michaux, S., and Ramuz, M., Physical Map of the Brucella melitensis 16 M Chromosome, J. Bacteriol., 1992, vol. 173, no. 4, pp. 2219–2224.

    Google Scholar 

  18. Michaux, S., Pallisson, J., Garles-Nurit, M.-J., Bourg, G., Allerdet-Servent, A., and Ramuz, M., Presence of Two Independent Chromosome in the Brucella melitensis 16 M Genome, J. Bacteriol., 1993, vol. 175, no. 3, pp. 701–705.

    PubMed  CAS  Google Scholar 

  19. Del Vecchio, V., Kapatral, V., Redkar, R., Patra, G., Mujer, C., Los, T., Ivanova, N., Anderson, I., Bhattacharyya, A., Lykidis, A., Reznik, G., Jablonski, L., Larsen, N., Souza, M., Bernal, A., Goltstam, E., Sekav, E., Elzer, Ph., Hagius, S., Gallaghan, D., Letesson, J.-J., Haselkorn, R., Kyprides, N., and Overbeek, R., The Genome Sequence of the Facultative Intracellular Pathogen Brucella melitensis, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 1, pp. 443–448.

    Article  CAS  Google Scholar 

  20. Jumas-Bilak, E., Michaux-Charachon, C., Bourg, D., Callaghan, D., and Ramuz, M., Differences in Chromosome Number Rearrangement in the Genus Brucella, Mol. Microbiol., 1998, vol. 27, no. 1, pp. 99–106.

    Article  PubMed  CAS  Google Scholar 

  21. Allader-Servent, A., Michaux-Charachon, S., Jumas-Bilak, E., Karayan, L., and Ramuz, M., Presence of the Linear and One Circular Chromosome in the Agrobacterium tumefaciens C58 Genome, J. Bacteriol., 1993, vol. 175, no. 24, pp. 7869–7874.

    Google Scholar 

  22. Jumas-Bilak, E., Michaux-Charachon, S., Bourg, G., and Ramuz, N., Allardet-Servent, A., Unconventional Genomic Organization in the Alpha Subgroup of the Proteobacteria, J. Bacteriol., 1998, vol. 180, no. 10, pp. 2749–2755.

    PubMed  CAS  Google Scholar 

  23. Wood, D., Setubal, J., Kaul, R., Monks, D., Kitajiame, J., Okura, V., Zhou, Y., Chen, L., et al. (51 authors), The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58, Science, 2001, vol. 294, no. 5550, pp. 2317–2323.

    Article  PubMed  CAS  Google Scholar 

  24. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Quorillo, B., Goldman, B., Cao, Y., et al. (41 authors), Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58, Science, 2001, vol. 294, no. 5550, pp. 2323–2328.

    Article  PubMed  CAS  Google Scholar 

  25. Kahng, L. and Shapiro, L., Polar Localization of Replicon Origins in the Multipartite Genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti, J. Bacteriol., 2003, vol. 185, no. 11, pp. 3384–3391.

    Article  PubMed  CAS  Google Scholar 

  26. Margolin, W. and Long, S., Isolation and Characterization of DNA Replication Origin from the 1700-Kilobase Pair Symbiotic Megaplasmid pSumB of Rhizobium meliloti, J. Bacteriol., 1993, vol. 175, no. 11, pp. 6553–6561.

    PubMed  CAS  Google Scholar 

  27. Galibert, F., Finan, T., Long, Sh., Puchler, A., Ampe, F., Barloy-Hubler, F., Barnett, M., et al. (56 authors), The Composite Genome of the Legume Symbiont Rhizobium meliloti, Science, 2001, vol. 293, no. 5529, pp. 668–672.

    Article  PubMed  CAS  Google Scholar 

  28. Finan, T., Weidner, S., Wong, K., Chain, P., and Vorholter, F., Hernandez-Lulas I., Becker A., Cowie A., Gouzy J., Golding B., and Puhler, A., The Complete Sequence of the 1683 Kb pSymB Megaplasmid from the N2-Fixing Endosymbiont Sinorhizobium meliloti, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 17, pp. 9889–9894.

    Article  PubMed  CAS  Google Scholar 

  29. Downei, A. and Young, P., The ABC of Symbiosis, Nature, 2001, vol. 412, no. 6847, pp. 597–598.

    Article  Google Scholar 

  30. Cheng, H.-P. and Lessie, T., Multiple Replicons Constituting the Genome of Pseudomonas cepacia 17616, J. Bacteriol., 1994, vol. 176, no. 13, pp. 4034–4042.

    PubMed  CAS  Google Scholar 

  31. Lessie, T., Hendrickson, W., Manning, B., and Devereux, R., Genomic Complexity and Plasticity of Burkholderia cepacia, FEMS Microbiol. Lett., 1996, vol. 144, no. 1, pp. 117–128.

    Article  PubMed  CAS  Google Scholar 

  32. Podley, P., Rombling, U., and Tummler, B., A Physical Genome Map of the Burkholderia cepacia Type Strain, Mol. Microbiol., 1995, vol. 17, no. 1, pp. 57–67.

    Article  Google Scholar 

  33. Komatsu, H., Imura, Y., Ohori, A., Nagata, Y., and Tsuda, M., Distribution and Organization of Auxotrophic Multichromosomal Genome of Burkholderia multivorans ATCC 17616, J. Bacteriol., 2003, vol. 185, no. 12, pp. 3333–3343.

    Article  PubMed  CAS  Google Scholar 

  34. Kolsto, A.B., Dynamic Bacterial Genome Organization, Mol. Microbiol., 1997, vol. 24, no. 2, pp. 241–248.

    Article  PubMed  CAS  Google Scholar 

  35. Nierman, W., De Shazer, D., Kim, H., Tettelin, H., Nelson, K., Feldblyum, T., Ulrich, R., Ronning, C., et al., (43 authors), Structural Flexibility in the Burkholderia mallei Genome, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 39, pp. 14246–14251.

    Article  PubMed  CAS  Google Scholar 

  36. Holden, M., Titball, R., Peacock, A., and Cerde, A., Cerdeno-Tiraga A., Atkins T., Crossman, L., Pitt, T., et al. (48 authors), Genomic Plasticity of the Causative Agent of Malioidosis, Burkholderia pseudomallei, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 39, pp. 14240–14245.

    Article  PubMed  CAS  Google Scholar 

  37. Thompson, F., Lida, T., and Swings, J., Biodiversity of Vibrios, Microbiol. Mol. Biol. Rev., 2004, vol. 68, no. 3, pp. 403–431.

    Article  PubMed  CAS  Google Scholar 

  38. Trucksis, M., Michalski, J., Denk, J.K., and Kaper, J., The Vibrio cholerae Genome Contains Two Unique Circular Chromosomes, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 24, pp. 14464–14469.

    Article  PubMed  CAS  Google Scholar 

  39. Yamaichi, Y., Lida, T., Park, K., Yamomoto, K., and Honda, T., Physical and Genetic Map of the Genome of Vibrio parahaemolyticus: Presence of Two Chromosomes in Vibrio Species, Mol. Microbiol., 1999, vol. 31, no. 5, pp. 1513–1521.

    Article  PubMed  CAS  Google Scholar 

  40. Tagomori, K., Lida, T., and Honda, T., Comparison of Genome Structures of Vibrios, Bacteria Possessing Two Chromosomes, J. Bacteriol., 2002, vol. 184, no. 16, pp. 4351–4358.

    Article  PubMed  CAS  Google Scholar 

  41. Majumder, R., Sengupta, S., Khetawat, G., Bharda, R., and Roychounhary, S., and Das, J., Physical Map of Genome of Vibrio cholerae 569B and Localization of Genetic Markers, J. Bacteriol., 1996, vol. 178, no. 4, pp. 1105–1112.

    PubMed  CAS  Google Scholar 

  42. Okada, K., Lida, T., Kita-Tsukamoto, K., and Honda, T., Vibrios Commonly Possess Two Chromosomes, J. Bacteriol., 2005, vol. 178, no. 2, pp. 752–757.

    Article  CAS  Google Scholar 

  43. Chen, C., Wu, K., Chang, Y., Chang, C., Tsai, H., Liao, T., et al. (52 authors), Comparative Genome Analysis of Vibrio vulnificus, a Marine Pathogen, Genome Res., 2003, vol. 13, no. 10, pp. 2577–2587.

    Article  PubMed  CAS  Google Scholar 

  44. Heidelberg, J., Eisen, J., Nelson, W., Clauton, M., Dadson, R., Haft, D., Hickey, E., et al. (37 authors), DNA Sequence of Both Chromosomes of the Cholera Pathogen Vibrio cholerae, Nature, 2000, vol. 406, no. 6795, pp. 477–483.

    Article  PubMed  CAS  Google Scholar 

  45. Waldor, M. and Raychaudhuri, D., Treasure Trove for Cholera Research, Nature, 2000, vol. 406, no. 6795, pp. 469–470.

    Article  PubMed  CAS  Google Scholar 

  46. Egan, E. and Waldor, M., Distinct Replication Requirements for the Two Vibrio Cholerae Chromosome, Cell, 2003, vol. 114, no. 4, pp. 521–530.

    Article  PubMed  CAS  Google Scholar 

  47. Pal, D., Venkova-Canova, T., Srivasta P., and Chattoraj, D., Multipartite Regulation of recB, the Replication Initiator Gene of Vibrio cholerae Chromosome II, J. Bacteriol., 2005, vol. 187, no. 18, pp. 7167–7175.

    Article  PubMed  CAS  Google Scholar 

  48. Duigan, S., Knudson, K., Skovgaard, O., Egan, E., Lobner-Olsen, A., and Waldor, M., Independent Control of Replication of the Two Vibrio cholerae Chromosomes by DnaA and RctB, J. Bacteriol., 2006, vol. 188, no. 17, pp. 6419–6424.

    Article  CAS  Google Scholar 

  49. Egan, E., Duigou, S., and Waldor, M., Autorepression of RctB, an Initiator of Vibrio cholerae Chromosome II Replication, J. Bacteriol., 2006, vol. 188, no. 2, pp. 789–793.

    Article  PubMed  CAS  Google Scholar 

  50. del Solar, G., Giraldo, R., Ruiz-Echevarria, M., Espinoza, M., and Diaz-Orejas, R., Replication and Control of Circular Plasmids, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 434–464.

    PubMed  Google Scholar 

  51. Egan, E., Lobner-Olsen, A., and Waldor, M., Synchronous Replication Initiator of the Two Vibrio cholerae Chromosomes, Curr. Biol., 2004, vol. 14, no. 13.

  52. Hiraga, S., Chromosome and Plasmid Partition in Escherichia coli, Annu. Rev. Biochem., 1992, vol. 61, pp. 283–306.

    Article  PubMed  CAS  Google Scholar 

  53. Fogel, M. and Waldor, M., Distinct Segregation Dynamics of the Two Vibrio cholerae Chromosomes, Mol. Microbiol., 2005, vol. 55, no. 1, pp. 125–136.

    Article  PubMed  CAS  Google Scholar 

  54. Rasmussen, T., Jensen, R., and Skovgaard, O., The Two Chromosomes of Vibrio cholerae Are Initiated at Different Time Points in the Cell Cycle, EMBO J., 2007, vol. 26, no. 13, pp. 3124–3131.

    Article  PubMed  CAS  Google Scholar 

  55. Zuerner, R.L., Herrman, J., and Saint Girons, I., Comparison of Genetic Maps for Two Leptospira interrogans Serovars Provides Evidence for Two Chromosomes and Intraspecies Heterogeneity, J. Bacteriol., 1993, vol. 175, no. 17, pp. 5445–5451.

    PubMed  CAS  Google Scholar 

  56. Ren, S., Fu, G., Jang, X.-G., Miao, Y., Xu, H., Zhang, Y.-X., et al., (41 authors), Unique Physiological and Pathogenic Features of Leptospira interrogans Revealed by Whole-Genome Sequencing, Nature, 2003, vol. 422, no. 6934, pp. 888–893.

    Article  PubMed  CAS  Google Scholar 

  57. Egan, E., Fogel, M., and Waldor, M., Divided Genomes: Negotiating the Cell Cycle in Procaryotes with Multiple Chromosomes, Mol. Microbiol., 2005, vol. 56, no. 5, pp. 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  58. Lawrence, J.C. and Ochman, H., Amelioration of Bacterial Genomes: Rates of Change and Exchange, J. Evol., 1997, vol. 44, no. 4, pp. 383–397.

    Article  CAS  Google Scholar 

  59. Rocha, E., The Replication-Related Organization of Bacterial Genomes, Microbiology, 2004, vol. 150, no. 5, pp. 1609–1627.

    Article  PubMed  CAS  Google Scholar 

  60. Prozorov, A.A., Regularities of the Location of Genes Having Different Functions and of Some Other Nucleotide Sequences in the Bacterial Chromosome, Mikrobiologiya, 2007, vol. 76, no. 4, pp. 437–447 [Microbiology (Engl. Transl.), vol. 76, no. 4, pp. 383–392].

    CAS  Google Scholar 

  61. Das, N. and Chattoraj, D., Origin Pairing (“Handcuffeling”) and Unpairing in the Control of P1 Replication, Mol. Microbiol., 2004, vol. 54, no. 3, pp. 836–849.

    Article  PubMed  CAS  Google Scholar 

  62. Moreno, E., Genome Evolution within the Alpha Proteobacteria: Why Do Some Bacteria Not Possess Plasmids and Other Exhibit More Than One Different Chromosome?, FEMS Microbiol. Rev., 1998, vol. 22, pp. 255–275.

    Article  PubMed  CAS  Google Scholar 

  63. Xu, Q., Dziejman, M., and Mekalanos, J., Determination of the Transcriptome of Vibrio cholerae during Intraintestinal Growth and Midexponential Phase In Vitro, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 3, pp. 1286–1291.

    Article  PubMed  CAS  Google Scholar 

  64. Mackenzie, C., Kaplan, S., and Choudhary, M., Multiple Chromosomes, Microbial evolution: Gene Establishment, Survival, and Exchange, Miller, R., and Day, M., Eds., Washington, DC: Am. Soc. Microbiol., 2004, pp. 82–101.

    Google Scholar 

  65. Mac Lellan, S., Sibley, C., and Finan, T., Second Chromosomes and Megaplasmids in Bacteria, Plasmid Biology, Phillips, B., Ed., Washington, DC: Am. Soc. Microbiol., 2004, pp. 529–542.

    Google Scholar 

  66. Srivastava, P. and Chatorraj, D., Selective Chromosome Amplification in Vibrio cholerae, Mol. Microbiol., 2007, vol. 66, no. 4, pp. 1016–1028.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Prozorov.

Additional information

Original Russian Text © A.A. Prozorov, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 4, pp. 437–447.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prozorov, A.A. Additional chromosomes in bacteria: Properties and origin. Microbiology 77, 385–394 (2008). https://doi.org/10.1134/S0026261708040012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261708040012

Key words

Navigation