Skip to main content
Log in

Application of molecular methods to classification and identification of bacteria of the genus Bifidobacterium

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The molecular methods currently used in the classification and identification of bifidobacteria are reviewed. The sequencing of the 16S rRNA gene and some other genes considered to be phylogenetic markers is a universal and effective approach for taxonomic characterization of members of the genus Bifidobacterium and to reliable identification of new isolates. Various techniques of obtaining DNA fingerprints (PFGE, RAPD, rep-PCR) are widely used for solving particular problems in identifying bifidobacteria. Bacteria of the genus Bifidobacterium are important organisms in biotechnology and medicine. The research in the field of molecular systematics of bifidobacteria provides a basis not only for the solution of taxonomic problems, but also for monitoring of individual species in the environment and for more detailed study of the genetics and ecology of this group of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gomes, A.M. and Malcata, F.X., Bifidobacterium spp. and Lactobacillus acidophilus: Biological, Biochemical, Technological and Therapeutical Properties Relevant for Use as Probiotics, Trends in Food Science & Technology, 1999, no. 10, pp. 139–157.

  2. Nebra, Y. and Blanch, A.R., A New Selective Medium for Bifidobacterium spp., Appl. Environ. Microbiol., 1999, vol. 65, no. 11, pp. 5173–5176.

    PubMed  CAS  Google Scholar 

  3. Leahy, S.C., Higgins, D.G., Fitzgerald, G.F., and van Sinderen, D., Getting Better with Bifidobacteria, J. Appl. Microbiol., 2005, no. 98, pp. 1303–1315.

  4. Ventura, M., van Sinderen, D, Fitzgerald, G.F., and Zink, R., Insights Into the Taxonomy, Genetics and Physiology of Bifidobacteria, Antonie van Leeuwenhoek, 2004, no. 86, pp. 205–223.

  5. O’sullivan, D.J. and Kullen, M.J., Tracking of Probiotic Bifidobacteria in the Intestine, Int. Dairy J., 1998, vol. 8, pp. 513–525.

    Article  CAS  Google Scholar 

  6. Vaughan, E.E., Heilig, H.G.H.J., Zoetendal, E.G., Satokari, R., Collins, J.K., Akkermans, A.D.L., and de Voss, W.M., Molecular Approaches To Study Probiotic Bacteria, Trends in Food Science & Technology, 1999, no. 10, pp. 400–404.

  7. O’sullivan, D.J., Methods for Analysis of the Intestinal Microflora, Curr. Iss. Intest. Microbiol., 2000, no. 1, pp. 39–50.

  8. Zoetendal, E.G., Collier, C.T., Koike, S., Mackie, R.I., and Gaskins, H.R., Molecular Ecological Analysis of the Gastrointestinal Microbiota: a Review, J. Nutr., 2004, vol. 134, pp. 465–472.

    PubMed  CAS  Google Scholar 

  9. Ward, P. and Roy, D., Review of Molecular Methods for Identification, Characterization and Detection of Bifidobacteria, Lait, 2005, vol. 85, pp. 23–32.

    Article  CAS  Google Scholar 

  10. Tissier, H., Recherches sur la flore intestinale des nourrissons (etat normal et pathologique), Paris Theses, 1900, pp. 1–253.

  11. Orla-Jensen, S., La classification des bacteries lactiques, Lait, 1924, no. 4, pp. 468–474.

  12. Poupard, J.A., Husain, I., and Norris, R.F., Biology of the Bifidobacteria, Bacteriol. Rev., 1973, vol. 37, no. 2, pp. 136–165.

    PubMed  CAS  Google Scholar 

  13. Scardovi, V., Genus Bifidobacterium Orla-Jensen 1924, 472AL, in Bergey’s Manual of Systematic Bacteriology, 1st ed., Sneath, P.H.A., Mayr, N.S., Sharpe, M.E., and Holt, J.G., Eds., Baltimore: Williams and Wilkins, 1986, vol. 2, pp. 1418–1434.

    Google Scholar 

  14. Arunachalam, K.D., Role of Bifidobacteria in Nutrition, Medicine and Technology, Nutrit. Res., 1999, vol. 19, no. 10, pp. 1559–1597.

    Article  CAS  Google Scholar 

  15. de Vuyst, L., Application of Functional Starter Cultures, Food Technol. Biotechnol., 2000, no. 38, pp. 105–112.

  16. Simpson, P.J., Ross, R.P., Fitzgerald, G.F., and Santon, C., Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., Isolated from Porcine Caecum, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 401–406.

    Article  PubMed  CAS  Google Scholar 

  17. Scardovi, V. and Trovatelli, L.D., The Fructose-6-Phosphate Shunt as a Peculiar Pattern of Hexose Degradation in the Genus Bifidobacterium, Ann. Microbiol. Enzymol., 1965, vol. 15, pp. 19–29.

    CAS  Google Scholar 

  18. de Vries, W. and Stouthamer, A.H., Pathway of Glucose Fermentation in Relation To the Taxonomy of Bifidobacteria, J. Bacteriol., 1967, vol. 93, pp. 574–576.

    PubMed  Google Scholar 

  19. Gavini, F., van Esbroeck, M., Touzel, J.P., Fourment, A., and Goosens, H., Detection of Fructose-6-Phosphate Phosphoketolase (F6PPK), a Key Enzyme of the Bifid-Shunt, in Gardnerella vaginalis, Anaerobe, 1996, vol. 2, pp. 191–193.

    CAS  Google Scholar 

  20. Sebald, M., Gasser, F., and Werner, H., Teneru GC% et classification. Application au groupe des bifidobacteries et a quelques genres voising, Ann. Inst. Pasteur, 1965, no. 109, pp. 259–269.

  21. Goodfellow, M., Suprageneric Classification of Actinomycetes, in Bergey’s Manual of Systematic Bacteriology, 1st ed., Williams, S.A., Sharpe, M.E., and Holt, J.G., Eds., Baltimore: Williams and Wilkins, 1989, vol. 4, pp. 2333–2339.

    Google Scholar 

  22. Lechevalier, H.A. and Lechevalier, M.P., Genus Oerskovia Prauser, Lechevalier and Lechevalier 1970, 534AL, in Bergey’s Manual of Systematic Bacteriology, 1st ed., Williams, S.A., Sharpe, M.E., and Holt, J.G., Eds., Baltimore: Williams and Wilkins, 1989, vol. 4, pp. 2379–2382.

    Google Scholar 

  23. Rogosa, M., Genus III. Bifidobacterium Orla-Jensen 1924, 472AL, in Bergey’s Manual of Determinative Bacteriology, Buchanan, R.E. and Gibbons, N.E., Eds., Baltimore: Williams and Wilkins, 1974, pp. 669–676.

    Google Scholar 

  24. Euzeby, J.P., List of Prokaryotic Names with Standing in Nomenclature—Genus Bifidobacterium, J.P. Uzeby SBSV, 2007, http://www.bacterio.cict.fr.

  25. Dehnert, J., Untersuchung uber die grampositive Stuhlflora des Brustmilchkindes, Zentralbl. Bacteriol. Parasitenk. Infektionskr. Hyg. Abt. Orig., 1957, no. 169, pp. 66–79.

  26. Reuter, G., Vergleichende Untersuchungen uber die Bifidus-Flora in Sauglings und Erwachsenenstuhl, Zentralbl. Bakteriol. Parasitenk. Hyg. Abt. Orig., 1963, no. 191, pp. 486–507.

  27. Mitsuoka, T., Vergleichende Untersuchungen uber die Bifidobakterien aus dem Verdauungstrakt von Menschen und Tieren, Zentralbl. Bakteriol. Parasitenk. Hyg. Abt. Orig., 1969, no. 210, pp. 52–64.

  28. Scardovi, V., Trovatelli, L.D., Zani, G., Crociani, F., and Metteuzzi, D., Deoxyribonucleic Acid Homology Relationships Among Species of the Genus Bifidobacterium, Int. J. Syst. Bacteriol., 1971, no. 21, pp. 276–294.

  29. Holdeman, L.V. and Moore, W.E.C., Anaerobe laboratory manual., Blacksburg: Virginia Polytechnic Institute and State University, 1972.

    Google Scholar 

  30. Kandler, O. and Weiss, N., Genus Lactobacillus Beijerinck 1901, 212AL, in Bergey’s Manual of Systematic Bacteriology, Sneath, P.E., Mair, N.S., and Sharpe, M.E., Eds., Baltimore: Williams and Wilkins, 1986, vol. 2, pp. 1209–1234.

    Google Scholar 

  31. Holzapfel, W.H., Haberer, P., Geisen, R., Bjorkroth, J., and Schillinger, U., Taxonomy and Important Features of Probiotic Microorganisms in Food and Nutrition, Amer. J. Clin. Nutrit, 2001, vol. 73, no. 2, pp. 365–373.

    Google Scholar 

  32. Bannikova, L.A., Koroleva, N.S., and Semenikhina, V.F., Mikrobiologicheskie osnovy molochnogo proizvodstva: spravochnik (Microbiological Basics of Diary Industry: a Manual), Kostin, Ya.I., Ed., Moscow: Agropromizdat, 1987.

    Google Scholar 

  33. Klein, G., Pack, A., Bonaparte, C., and Reuter, G., Taxonomy and Physiology of Probiotic Lactic Acid Bacteria, Int. J. Food Microbiol., 1998, no. 41, pp. 103–125.

  34. Zhu, L., Li, W., and Dong, X., Species Identification of Genus Bifidobacterium Based on Partial HSP60 Gene Sequences and Proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov., Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  35. Matsuki, T., Watanabe, K., Tanaka, R., and Oyaizu, H., Rapid Identification of Human Intestinal Bifidobacteria by 16S rRNA-Targeted Species-and Group-Specific Primers, FEMS Microbiol. Lett., 1998, vol. 167, pp. 113–121.

    Article  PubMed  CAS  Google Scholar 

  36. Yeung, P.S.M., Sanders, M.E., Kitts, C.L., Cano, R., and Tong, P.S., Species-Specific Identification of Commercial Probiotic Strains, J. Dairy Sci., 2002, no. 85, pp. 1039–1051.

  37. Biavati, B., Sgorbati, B., and Scardovi, V., The Genus Bifidobacterium, in The Procaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application, Balows, A., Ed., New York: Springer, 1992, pp. 816–833.

    Google Scholar 

  38. Roy, D., Berger, J.L., and Reuter, G., Characterization of Dairy-Related Bifidobacterium spp. Based on Their Beta-Galactosidase Electrophoretic Patterns, Int. J. Food Microbiol., 1994, vol. 23, pp. 55–70.

    Article  PubMed  CAS  Google Scholar 

  39. Woese, C.R., Bacterial Evolution, Microbiol. Rev., 1987, vol. 51, pp. 221–271.

    PubMed  CAS  Google Scholar 

  40. Stackebrandt, E., Rainey, F.A., and Ward-Rainey, N.L., Proposal for a New Hierarchic Classification System, Actinobacteria classis nov., Int. J. Syst. Bacteriol., 1997, no. 47, pp. 479–491.

  41. Leblond-Bourget, N., Philippe, H., Mangin, I., and Decaris, B., 16S rRNA and 16S to 23S Internal Transcribed Spacer Sequence Analyses Reveal Inter-and Intraspecific Bifidobacterium Phylogeny, Int. J. Syst. Bacteriol., 1996, no. 56, pp. 102–111.

  42. Jian, W. and Dong, X., Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., Respectively, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 809–812.

    Article  PubMed  CAS  Google Scholar 

  43. Schleifer, K.H. and Ludwig, W., Phylogeny of the Genus Lactobacillus and Related Genera, Syst. Appl. Microbiol., 1995, no. 18, pp. 461–467.

  44. Schleifer, K.H. and Ludwig, W., Phylogenetic Relationships of Lactic Acid Bacteria, The Genera of Lactic Acid Bacteria, Wood, B.J.B. and Holzapfel W.H, Eds., London: Chapman and Hall, 1995, pp. 7–18.

    Google Scholar 

  45. Stackebrandt, E. and Goebel, B.M., Taxonomic Note: a Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology, Int. J. Syst. Bacteriol., 1994, no. 44, pp. 846–849.

  46. Lauer, E. and Kandler, O., DNA-DNA Homology, Murein Type and Enzyme Patterns in the Type Strains of the Genus Bifidobacterium, Syst. Appl. Microbiol., 1983, vol. 4, pp. 42–64.

    CAS  Google Scholar 

  47. Sakata, S., Kitahara, M., Sakamoto, M., Hayashi, H., Fukuyama, M., and Benno, Y., Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1945–1951.

    Article  PubMed  CAS  Google Scholar 

  48. International Committee on Systematics of Prokaryotes; Subcommittee on the Taxonomy of Bifidobacterium, Lactobacillus and related organisms. Minutes of meetings, 1–2 April 2005, Stuttgart-Hohenheim, Germany, Int. J. Syst. Evol. Microbiol., 2006, V. 56. P. 2501–2503.

  49. Miyake, T., Watanabe, K., Watanabe, T., and Oyaizu, H., Phylogenetic Analysis of the Genus Bifidobacterium and Related Genera Based on 16S rDNA Sequences, Microbiol. Immunol., 1998, no. 42, pp. 661–667.

  50. Jian, W., Zhu, L., and Dong, X., New Approach to Phylogenetic Analysis of the Genus Bifidobacterium Based on Partial HSP60 Gene Sequences, Int. J. Syst. Bacteriol., 1991, vol. 41, pp. 548–557.

    Article  Google Scholar 

  51. Ventura, M., Canchaya, C., Meylan, V., Klaenhammer, T.R., and Zink, R., Analysis, Characterization and Loci of the tuf Genes in Lactobacillus and Bifidobacterium Species and Their Direct Application for Species Identification, Appl. Environ. Microbiol., 2003, vol. 69, pp. 7517–7522.

    Article  PubMed  CAS  Google Scholar 

  52. Ventura, M., Canchaya, C., Casale, A.D., Dellaglio, F., Neviani, E., Fitzgerald, G.F., and van Sinderen, D., Analysis of Bifidobacterial Evolution Using a Multilocus Approach, Int. J. Syst. Evol. Microbiol, 2006, vol. 56, pp. 2783–2792.

    Article  PubMed  CAS  Google Scholar 

  53. McCartney, A.L., Wenzhi, W., and Tannock, G.W., Molecular Analysis of the Composition of the Bifidobacterial and Lactobacillus Microflora of Humans, Appl. Environ. Microbiol., 1996, vol. 62, pp. 4608–4613.

    PubMed  CAS  Google Scholar 

  54. Farber, J.M., An Introduction to the Hows and Whys of Molecular Typing, J. Food Prot., 1996, no. 59, pp. 1091–1101.

  55. Sakata, S., Ryu, C.S., Kitahara, M., Sakamoto, M., Hayashi, H., Fukuyama, M., and Benno, Y., Characterization of the Genus Bifidobacterium by Automated Ribotyping 16S rRNA Gene Sequences, Microbiol. Immunol., 2006, vol. 50, pp. 1–10.

    PubMed  CAS  Google Scholar 

  56. Stach, J.E.M., Maldonado, L.A., Ward, A.C., Goodfellow, M., and Bull, A.T., New Primers for the Class Actinobacteria: Application to Marine and Terrestrial Environments, Environ. Microbiol., 2003, vol. 5, pp. 828–841.

    Article  PubMed  CAS  Google Scholar 

  57. Kok, R.G., Waal, A.D., Schut, F., Welling, G.W., Weenk, G., and Helligwerf, K.J., Specific Detection and Analysis of Probiotic Bifidobacterium Strain in Infant Feces, Appl. Environ. Microbiol., 1996, vol. 62, pp. 3668–3672.

    PubMed  CAS  Google Scholar 

  58. Kaufmann, P., Pfefferkorn, A., Teuber, M., and Meile, L., Identification and Quantification of Bifidobacterium Species Isolated from Food with Genus-Specific 16S rRNA-Targeted Probes by Colony Hybridization and PCR, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1268–1273.

    PubMed  CAS  Google Scholar 

  59. Matsuki, T., Watanabe, K., and Tanaka, R., Genus-and Species-Specific PCR Primers for the Detection and Identification of Bifidobacteria, Curr. Issues Intest. Microbiol., 2003, vol. 4, pp. 61–69.

    PubMed  CAS  Google Scholar 

  60. Ventura, M., Reniero, R., and Zink, R., Specific Identification and Targeted Characterization of Bifidobacterium lactis from Different Environmental Isolates by a Combined Multiplex-PCR Approach, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2760–2765.

    Article  PubMed  CAS  Google Scholar 

  61. Roy, D. and Sirois, S., Molecular Differentiation of Bifidobacterium Species with Amplified Ribosomal DNA Restriction Analysis and Alignment of Short Regions of the ldh Gene, FEMS Microbiol. Lett., 2000, vol. 191, no. 1, pp. 17–24.

    Article  PubMed  CAS  Google Scholar 

  62. Ventura, M., Elli, M., Reniero, R., and Zink, R., Molecular Microbial Analysis of Bifidobacterium Isolates from Different Environments by the Species-Specific Amplified Ribosomal DNA Restriction Analysis (ARDRA), FEMS Microbiol. Ecol., 2001, vol. 36, nos. 2–3, pp. 113–121.

    PubMed  CAS  Google Scholar 

  63. Mangin, I., Bourget, N., Bouhnik, Y., Bisetti, N., Simonet, J.M., and Decaris, B., Identification of Bifidobacterium Strains by RRNA Restriction Patterns, Appl. Environ. Microbiol., 1994, vol. 60, pp. 1451–1458.

    PubMed  CAS  Google Scholar 

  64. Barry, T., Colleran, G., Glennon, M., Dunican, L.K., and Gannon, F., The 16S/23S Ribosomal Spacer Region as a Target for DNA Probes To Identify Eubacteria, PCR Methods and Applications, 1991, no. 1, pp. 51–56.

  65. Ventura, M. and Zink, R., Rapid Identification, Differentiation and Proposed New Taxonomic Classification of Bifidobacterium lactis, Appl. Environ. Microbiol., 2002, vol. 68, pp. 6429–6434.

    Article  PubMed  CAS  Google Scholar 

  66. Kullen, M.J., Brady, L.J., and O’sullivan, D.J., Evaluation of Using a Short Region of the recA Gene for the Rapid and Sensitive Speciation of Dominant Bifidobacteria in the Human Large Intestine, FEMS Microbiol. Lett., 1997, vol. 154, pp. 377–383.

    PubMed  CAS  Google Scholar 

  67. Ventura, M. and Zink, R., Comparative Sequence Analysis of the tuf and recA Genes and Restriction Fragment Length Polymorphism of the Internal Transcribed Spacer Region Sequences Supply Additional Tools for Discriminating Bifidobacterium lactis from Bifidobacterium animalis, Appl. Environ. Microbiol., 2003, vol. 69, pp. 7517–7522.

    Article  PubMed  CAS  Google Scholar 

  68. Requena, T., Burton, J., Matsuki, T., Munro, K., Simon, M.A., Tanaka, R., Watanabe, K., and Tannock, G.W., Identification, Detection, and Enumeration of Human Bifidobacterium Species by PCR Targeting the Transaldolase Gene, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2420–2427.

    Article  PubMed  CAS  Google Scholar 

  69. Satokari, R.M., Vaughan, E.E., Smidt, H., Saarela, M., Matto, J., and de Vos, W.M., Molecular Approaches for the Detection and Identification of Bifidobacteria and Lactobacilli in the Human Gastrointestinal Tract, Syst. Appl. Microbiol., 2003, vol. 26, pp. 572–584.

    Article  PubMed  CAS  Google Scholar 

  70. Simpson, P.J., Stanton, C., Fitzgerald, G.F., and Ross, R.P., Genomic Diversity and Relatedness of Bifidobacteria Isolated from a Porcine Cecum, J. Bacteriol., 2003, vol. 185, no. 8, pp. 2571–2581.

    Article  PubMed  CAS  Google Scholar 

  71. Vincent, D., Roy, D., Mondou, F., and Dery, C., Characterization of Bifidobacteria by Random DNA Amplification, Int. J. Food Microbiol., 1998, no. 43, pp. 185–193.

  72. Fanedl, L., Nekrep, F.V., and Avgustin, G., Random Amplified Polymorphic DNA Analysis and Demonstration of Genetic Variability among Bifidobacteria Isolated from Rats Fed with Raw Kidney Beans, Can. J. Microbiol., 1998, vol. 44, pp. 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  73. Ventura, M., Meylan, V., and Zink, R., Identification and Tracing of Bifidobacterium Species by Use of Enterobacterial Repetitive Intergenic Consensus Sequences, Appl. Environ. Microbiol., 2003, vol. 69, no. 7, pp. 4296–4301.

    Article  PubMed  CAS  Google Scholar 

  74. Masco, L., Huys, G., Gevers, D., Verbugghen, L., and Swings, J., Identification of Bifidobacterium Species Using rep-PCR Fingerprinting, Syst. Appl. Microbiol., 2003, vol. 26, pp. 557–563.

    Article  PubMed  CAS  Google Scholar 

  75. Yamamoto, T., Morotomi, M., and Tanaka, R., Species-Specific Oligonucleotide Probes for Five Bifidobacterium Species Detected in Human Intestinal Microflora, Appl. Environ. Microbiol., 1992, vol. 58, pp. 4076–4079.

    PubMed  CAS  Google Scholar 

  76. Hayashi, H., Takahashi, R., Nishi, T., Sakamoto, M., and Benno, Y., Molecular Analysis of Jejunal, Ileal, Caecal and Rectosigmoidal Human Colonic Microbiota Using 16S rRNA Gene Libraries and Terminal Restriction Fragment Length Polymorphism, J. Med. Microbiol., 2005, no. 54, pp. 1093–1101.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sidarenka.

Additional information

Original Russian Text © A.V. Sidarenka, G.I. Novik, V.N. Akimov, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 3, pp. 293–302.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidarenka, A.V., Novik, G.I. & Akimov, V.N. Application of molecular methods to classification and identification of bacteria of the genus Bifidobacterium . Microbiology 77, 251–260 (2008). https://doi.org/10.1134/S0026261708030016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261708030016

Key words

Navigation