Skip to main content
Log in

Bioremediation of soils and sediments contaminated by polychlorinated biphenyls

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This review discusses the prospects of using the potential of microorganisms for bioremediation of PCB-contaminated natural environments (soil, sediments, and sewage sludge) under anaerobic and aerobic conditions. A detailed analysis of the research conditions of original works has shown that the efficiency of bioremediation of PCB-contaminated matrices strongly depends on the character and degree of contamination. In the case of aerobic bioremediation, the best results were obtained with moderately contaminated soils and sediments (20 to 700 PCB/kg), in which the level of contamination decreased by 40–75%. These results could be achieved by repeated inoculation of a consortium of specific microorganisms (isolated or engineered) with concurrent addition of biphenyl as an inducer and of biosurfactants; their effect increased in a slurry bioreactor. PCB concentration decreased mainly due to the degradation of congeners with one to three chlorine atoms. The content of higher-chlorinated PCB can be noticeably decreased only under sequential anaerobic/aerobic treatment; the best effect was achieved with anaerobic granules. However, only in individual cases, mainly in laboratory experiments with freshly spiked PCB at moderate concentrations, was it possible to reduce their content to a level permissible for technogenic soils. The review begins with the description of the main metabolic pathways and patterns of biodegradation of these pollutants in natural and artificial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borja, J., Taleon, D.M., Auresenia, J., and Gallardo, S., Polychlorinated Biphenyls and Their Biodegradation, Process. Biochemistry, 2005, vol. 40, pp. 1999–2013.

    Article  CAS  Google Scholar 

  2. Fedorov, L.A., Dioxins as a Fundamental Factor of Technogenic Pollution, Zh. Ekologich. Khimii, 1993, no. 3, pp. 169–187.

  3. Chavez, F.P., Gordillo, F., and Jerez, C.A., Adaptive Responses and Cellular Behavior of Biphenyl-Degrading Bacteria Toward Polychlorinated Biphenyls, Biotechnol. Adv., 2006, vol. 24, pp. 309–320.

    Article  PubMed  CAS  Google Scholar 

  4. Ross, G., The Public Health Implications of Polychlorinated Biphenyls (PCBs) in the Environment, Rev. Ecotox. Environ. Safety, 2004, vol. 59, pp. 275–291.

    Article  CAS  Google Scholar 

  5. Abraham, W.R., Nogales, B., Golyshin, P.N., Pieper, D.H., and Timmis, K.N., Polychlorinated Biphenyl-Degrading Microbial Communities in Soils and Sediments, Curr. Opin. Microbiol., 2002, vol. 5, pp. 246–253.

    Article  PubMed  CAS  Google Scholar 

  6. De, S., Perkins, M., and Dutta, S.K., Nitrate Reductase Gene Involvement in Hexachlorobiphenyl Dechlorination by Phanerochaete chrysosporium, J. Hazard. Mater., 2006, vol. 135, pp. 350–354.

    Article  PubMed  CAS  Google Scholar 

  7. Mackova, M., Barriault, D., Francova, K., Sylvestre, M., Moder, M., Vrchotova, B., Lovecka, P., Najmanova, J., Demnerova, K., Novakova, M., Rezek, J., and Macek, T., Phytoremediation of Polychlorinated Biphenyls, Phytoremediation and Rhizoremediation, Mackova M. et al., Eds., Springer, 2006.

  8. Bakker, D.J., De Vries, W., Vad de Plassche, E.J., and Van Pul, W.A.J., Manual for Performing Risk Assessments for Persistent Organic Pollutants in Aquatic Ecosystems. Guidelines for Critical Limits, Calculation Methods and Input Data, TNO-Report, TNO-MEPR98/376.

  9. Ohtsubo, Y., Kudo, T., Tsuda, M., and Nagata, Y., Strategies for Bioremediation of Polychlorinated Biphenyls, Appl. Microbiol. Biotechnol., 2004, vol. 65, pp. 250–258.

    Article  PubMed  CAS  Google Scholar 

  10. Pieper, D.H., Aerobic Degradation of Polychlorinated Biphenyls, Appl. Microbiol. Biotechnol., 2005, vol. 67, pp. 170–191.

    Article  PubMed  CAS  Google Scholar 

  11. Bedard, D.L. and Quensen III, J.F., Microbial Reductive Dechlorination of Polychlorinated Biphenyls, Microbial Transformation and Degradation of Toxic Organic Chemicals, Young, Y. and Cerniglia, C.E., Eds., New York: Wiley-Liss, 1995, pp. 127–216.

    Google Scholar 

  12. Wiegel, J. and Wu, Q.Z., Microbial Reductive Dehalogenation of Polychlorinated Biphenyls, FEMS Microbiol. Letts., 2000, vol. 32, pp. 1–15.

    Article  CAS  Google Scholar 

  13. Zanaroli, G., Perez-Jimenez, J.R., Young, L.Y., Marchetti, L., and Fava, F., Microbial Reductive Dechlorination of Weathered and Exogenous Co-Planar Polychlorinated Biphenyls (PCBs) in An Anaerobic Sediment of Venice Lagoon, Biodegradation, 2006, vol. 17, pp. 121–129.

    Article  PubMed  CAS  Google Scholar 

  14. Bedard, D.L., Bailey, J.J., Reiss, B.L., and Jerzak, G.V., Development and Characterization of Stable Sediment-Free Anaerobic Bacterial Enrichment Cultures That Dechlorinate Aroclor 1260, Appl. Environ. Microbiol., 2006, vol. 72, pp. 2460–2470.

    Article  PubMed  CAS  Google Scholar 

  15. Furukawa, K., Oxygenases and Dehalogenases: Molecular Approaches To Efficient Degradation of Chlorinated Environmental Pollutants, Boisci. Biotechnol. Biochem., 2006, vol. 70, pp. 2335–2348.

    Article  CAS  Google Scholar 

  16. Ang, E.L., Zhao, H.M., and Obbard, J.P., Recent Advances in the Bioremediation of Persistent Organic Pollutants Via Biomolecular Engineering, Enz. Microbial Technol., 2005, vol. 37, pp. 487–496.

    Article  CAS  Google Scholar 

  17. Kohler, H.-E.P., Kohler-Staub, D., and Focht, D.D., Cometabolism of Polychlorinated Biphenyls: Enhanced Transformation of Aroclor 1254 by Growing Bacterial Cells, Appl. Environ. Microbiol., 1988, vol. 54, pp. 1940–1945.

    PubMed  CAS  Google Scholar 

  18. Rybkina, D.O., Plotnikova, E.G., Dorofeeva, L.V., Mironenko, Yu.L., and Demakov, V.A., A New Aerobic Gram-Positive Bacterium with a Unique Ability to Degrade ortho-and para-chlorinated Biphenyls, Mikrobiologiya, 2003, vol. 72, no. 6, pp. 759–765 [Microbiology (Engl. Transl.), vol. 72, no. 6, pp. 672–677].

    CAS  Google Scholar 

  19. Di Gioia, D., Bertin, L., Zanaroli, G., Marchetti, L., and Fava, F., Polichlorinated Biphenyl Degradation in Aquaous Wastes by Employing Continious Fixed-Bed Bioreactors, Process Biochem., 2006, vol. 41, pp. 935–940.

    Article  CAS  Google Scholar 

  20. Brunner, W., Sutherland, F.H., and Focht, D.D., Enhanced Biodegradation of Polychlorinated Biphenyls in Soil by Analog Enrichment and Bacterial Inoculation, J. Environ. Qual., 1985, vol. 14, pp. 324–328.

    Article  CAS  Google Scholar 

  21. Komancova, M., Jurcova, I., Kochankova, L., and Burkhard, J., Metabolic Pathways of Polychlorinated Biphenyls Degradation by Pseudomonas sp. 2, Chemosphere, 2003, vol. 50, pp. 537–543.

    Article  PubMed  CAS  Google Scholar 

  22. Keum, Y.S. and Li, Q.X., Fungal Laccase-Catalyzed Degradation of Hydroxy Polychlorinated Biphenyls, Chemosphere, 2004, vol. 56, pp. 23–30.

    Article  PubMed  CAS  Google Scholar 

  23. Kamei, I., Kogura, R., and Kondo, R., Metabolism of 4,4′-Dichlorobiphenyl by White-Rot Fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142, Appl. Microbiol. Biotech., 2006, vol. 72, pp. 566–575.

    Article  CAS  Google Scholar 

  24. Kubatova, A., Erbanova, P., Eichlerova, I., Homolka, L., Nerud, F., and Sasek, V., PCB Congener Selective Biodegradation by the White Rot Fungus Pleurotus ostreatus in Contaminated Soil, Chemosphere, 2001, vol. 43, pp. 207–215.

    Article  PubMed  CAS  Google Scholar 

  25. Zharikov, G.A., Borovick, R.V., Kapranov, V.V., Kiselyova, N.I., Krainova, O.A., Dyadishcheva, V.P., Salanda, A.V., and Zharikov, M.G., Study of Contamination and Migration of Polychlorinated Biphenyls in the Environment. Bioremediation of Contaminated Soils and Assessment of Their Impact on the Serpukhov Population Health, Bioremediation of Soils Contaminated with Aromatic Compounds, Heipiper H.J., Ed., Springer, 2007, pp. 93–104.

  26. Natarajan, M.R., Wu, W.M., Wang, H., Bhatnagar, L., and Jain, M.K., Dechlorination of Spiket PCBs in Lake Sediment by Anaerobic Microbial Granules, Water. Res., 1998, vol. 32, pp. 3013–3020.

    Article  CAS  Google Scholar 

  27. Adriaens, P. and Grbic-Grlic, D., Cometabolic Transformation of Mono-and Dichlorobiphenyls and Chlorohydroxybiphenyls by Methanotrophic Groundwater Isolates, Environ. Sci. Technol., 1994, vol. 28, pp. 1325–1330.

    Article  CAS  Google Scholar 

  28. Nollet, H., Van de Putte, I., Raskin, L., and Verstraete, W., Carbon/Electron Source Dependence of Polychlorinated Biphenyl Dechlorination Pathways for Anaerobic Granules, Chemosphere, 2005, vol. 58, pp. 299–310.

    Article  PubMed  CAS  Google Scholar 

  29. Tartakovsky, B., Michote, A., Cadieux, J.-A.C., Lau, P.C.K., Hawari, J., and Guiot, S.R., Degradation of Aroclor 1242 in a Single-Stage Coupled Anaerobic/Aerobic Bioreactor, Water Res., 2001, vol. 35, pp. 4323–4330.

    Article  PubMed  CAS  Google Scholar 

  30. Moza, P., Scheunert, I., Klein, W., and Korte, F., Studies with 2,4′5-Trichlorobiphenyl-14C and 2,2′,4,4′,5-Pentaclorobiphenyl-14C in Carrots, Sugar Beets, and Soil, J. Agr. Food Chem., 1979, vol. 27, pp. 1079–1124.

    Article  Google Scholar 

  31. Focht, D.D. and Brunner, W., Kinetics of Biphenyl and Polychlorinated Biphenyl Metabolism in Soil, Appl. Environ. Microbiol., 1985, vol. 50, pp. 1058–1063.

    PubMed  CAS  Google Scholar 

  32. Vasilyeva, G.K, Strijakova, E.R, and Shea, P.J, Use of Activated Carbon for Soil Bioremediation, Viable methods of soil and water pollution monitoring, protection and remediation, Twardowska, I. et al. Eds., Serial NATO Collection, Springer, 2006.

  33. Bzdusek, P.A., Lu, J., and Christensen, E.R., PCB Congeners and Dechlorination in Sediments of Sheboygan River, Wisconsin, Determined by Matrix Factorization, Environ. Sci. Technol., 2006, vol. 40, pp. 120–129.

    Article  PubMed  CAS  Google Scholar 

  34. Cho, Y.C., Sokol, R.C., Frohnhoefer, R.C., and Rhee, G.Y., Reductive Dechlorination of Polychlorinated Biphenyls: Threshold Concentration and Dechlorination Kinetics of Individual Congeners in Aroclor 1248, Environ. Sci. Technol., 2003, pp. 5651–5656.

  35. Zeeb, B.A., Amphlet, J.S., Rutter, A., and Reimer, K.J., Potential for Phytoremediation of Polychlorinated Biphenyl-(PCB)-Contaminated Soil, Int. J. Phytoremedia, 2006, vol. 8, pp. 199–221.

    Article  CAS  Google Scholar 

  36. Sinkhonen, S. and Paasivirta, J., Degradation Half-Life Times of PCDDs, PCDFs and PCBs for Environmental Fate Modeling, Chemosphere, 2000, vol. 40, pp. 943–949.

    Article  Google Scholar 

  37. Ayris, S. and Harrad, S., The Fate and Persistence of Polychlorinated Biphenyls in Soil, J. Environ. Monitor, 1999, vol. 1, pp. 395–401.

    Article  CAS  Google Scholar 

  38. Fava, F., Bertin, L., Fedi, S., and Zannoni, D., Methyl-Beta-Cyclodextrin-Enhanced Solubilization and Aerobic Biodegradation of Polychlorinated Biphenyls in Two Aged-Contaminated Soils, Biotechnol. Bioeng., 2003, vol. 81, pp. 381–390.

    Article  PubMed  CAS  Google Scholar 

  39. Chang, B.V., Liu, W.G., and Yuan, S.Y., Microbial Dechlorination of Three PCBs Congeners in River Sediment, Chemosphere, 2001, vol. 45, pp. 849–856.

    Article  PubMed  CAS  Google Scholar 

  40. Kwon, O.S., Kim, Y.E., and Park, J.G., Effect of Moisture Content on Reductive Dechlorination of Polychlorinated Biphenyls and Population Dynamics of Dechlorinating Microorganisms, J. Microbiol., 2001, vol. 39, pp. 195–201.

    CAS  Google Scholar 

  41. Rysavy, J.P., Yan, T., and Novak, P.J., Enrichment of Anaerobic Polychlorinated Biphenyl Dechlorinators from Sediment with Iron as a Hydrogen Source, Water Res., 2005, vol. 39, pp. 569–578.

    Article  PubMed  CAS  Google Scholar 

  42. Alexander, M., Biodegradation and bioremediation, CA, USA: Academic Press, 1999.

    Google Scholar 

  43. Harkness, M.R., McDermott, J.B., Abramowicz, D.A., Salvo, J.J., Flanagan, W.P., Stephens, M.L., Mondello, F.J., May, R.J., Lobos, J.H., Carrol, K.M., Brennan, M.J., Bracco, A.A., Fish, K.M., Warner, G.L., Wilson, P.R., Dietrich, D.K., Lin, D.T., Morgan, C.B., and Gately, W.L., In Situ Stimulation of Aerobic PCB Biodegradation in Hudson River Sediments, Science, 1993, vol. 259, pp. 503–507.

    Article  PubMed  CAS  Google Scholar 

  44. Oh, E.T., Koh, S.C., Kim, E., Ahn, Y.H., and So, J.S., Plant Terpenes Enhance Survivability of Polychlorinated Biphenyl (PCB) Degrading Pseudomonas pseudoalcaligenes KF707 Labeled with gfp in Microcosms Contaminated with PCB, J. Appl. Microbiol. Biotechnol., 2003, vol. 13, pp. 463–468.

    CAS  Google Scholar 

  45. Singer, A.C., Gilbert, E.S., Luepromchai, E., and Crowley, D.E., Bioremediation of Polychlorinated Biphenyl-Contaminated Soil Using Carvone and Surfactant-Grown Bacteria, Appl. Microbiol. Biochem., 2000, vol. 54, pp. 838–843.

    Article  CAS  Google Scholar 

  46. Mulligan, C.N., Yong, R.N., and Gibbs, B.F., Surfactant-Enhanced Remediation of Contaminated Soil: a Review, Eng. Geology, 2001, vol. 60, pp. 371–380.

    Article  Google Scholar 

  47. Hudak, A.J. and Cassidy, D.P., Stimulating In-Soil Rhamnolipid Production in a Bioslurry Reactor by Limiting Nitrogen, Biotechnol. Bioeng., 2004, vol. 88, pp. 861–868.

    Article  PubMed  CAS  Google Scholar 

  48. Doick, K.J., Burauel, P., Jones, K.C., and Semple, K.T., Effect of Cyclodextrin and Transformer Oil Amendments on the Chemical Extractability of Aged [C-14]Polychlorinated Biphenyl and [C-14]Polycyclic Aromatic Hydrocarbon Residues in Soil, Environ. Toxicol. Chem., 2005, vol. 24, pp. 2138–2144.

    Article  PubMed  CAS  Google Scholar 

  49. Jonker, M.T.O. and Barendregt, A., Oil Is Sedimentary Supersorbent for Polychlorinated Biphenyls, Environ. Sci. Technol., 2006, vol. 40, pp. 3829–3835.

    Article  PubMed  CAS  Google Scholar 

  50. Sylvestre, M., Biphenyl/Chlorobiphenyls Catabolic Pathway of Comamonas testosteroni B-356: Prospect for Use in Bioremediation, Int. Biodeter. Biodegr., 1995, pp. 189–211.

  51. Ahn, Y.B., Beaudette, L.A., Lee, H., and Trevors, J.T., Survival of a gfp-Labeled Polychlorinated Biphenyl Degrading Psychrotolerant Pseudomonas spp. in 4 and 22 Degrees C Soil Microcosms, Microbial. Ecology, 2001, vol. 42, pp. 614–623.

    Article  PubMed  CAS  Google Scholar 

  52. Sierra, I., Valera, J.L., Marina, M.L., and Laborda, F., Study of the Biodegradation Process of Polychlorinated Biphenyls in Liquid Medium and Soil by a New Isolated Aerobic Bacterium (Janibacter sp.), Chemosphere, 2003, vol. 53, pp. 609–618.

    Article  PubMed  CAS  Google Scholar 

  53. Di Toro, S., Zanaroli, G., and Fava, F., Intensification of the Aerobic Bioremediation of an Actual Site Soil Historically Contaminated by Polychlorinated Biphenyls (PCBs) Through Bioaugmentation with a Non Acclimated, Complex Source of Microorganisms, Microbial. Cell. Factories, 2006, vol. 6, pp. 1–10.

    Google Scholar 

  54. Maltseva, O.V., Tsoi, T.V., Quensen III, J.F., Fukuda, M., and Tiedje, J.M., Degradation of Anaerobic Reductive Dechlorination Products of Aroclor 1242 by Four Aerobic Bacteria, Biodegradation, 1999, vol. 10, pp. 363–371.

    Article  PubMed  CAS  Google Scholar 

  55. Smith, K.E., Schwab, A.P., and Banks, M.K., Phytoremediation of Polychlorinated Biphenyl (PCB)-Contaminated Sediment: A Greenhouse Feasibility Study, J. Environ. Quality, 2007, vol. 36, pp. 239–244.

    Article  CAS  Google Scholar 

  56. Kuipers, B., Cullen, W.R., and Mohn, W.W., Reductive Dechlorination of Weathered Aroclor 1260 during Anaerobic Biotreatment of Arctic Soils, Can. J. Microbiol., 2003, vol. 49, pp. 9–14.

    Article  PubMed  CAS  Google Scholar 

  57. Rodrigues, J.L.M., Kachel, C.A., Aiello, M.R., Quensen III, J.F., Maltseva, O.V., Tsoi, T.V., and Tiedje, J.M., Degradation of Aroclor 1242 Dechlorination Products in Sediments by Burkholderia xenovorans LB400(Ohb) and Rhodococcus sp. Strain RHA1 (Fcb), Appl. Environ. Microbiol., 2006, vol. 72, pp. 2476–2482.

    Article  PubMed  CAS  Google Scholar 

  58. Tharakan, J., Tomlinson, D., Addagada, A., and Shafagati, A., Biotransformation of PCBs in Contaminated Sludge: Potential for Novel Biological Technologies, Eng. Life Sci., 2006, vol. 6, pp. 43–50.

    Article  CAS  Google Scholar 

  59. Patureau, D. and Trably, E., Impact of Anaerobic and Aerobic Processes on PolychloroBiphenyl Removal in Contaminated Sewage Sludge, Biodegradation, 2006, vol. 17, pp. 9–17.

    Article  PubMed  CAS  Google Scholar 

  60. Shimura, M., Hayakawa, T., Kyotani, T., Ushiogi, T., and Kimbara, K., Bioremediation of Polychlorinated Biphenyl Contaminated Sludge and Ballast, Proc. Institution of Mech. Eng. Part F-J. Rail and Rapid Transit, 2003, vol. 217, pp. 285–290.

    Article  Google Scholar 

  61. Ryslava, E., Krejcik, Z., Macek, T., Novakova, H., Denmerova, K., and Mackova, M., Study of PCB Degradation in Real Contaminated Soil, Fres. Environ. Bull, 2003, vol. 12, pp. 296–301.

    CAS  Google Scholar 

  62. Villacieros, M., Whelan, C., Mackova, M., Molgaard, J., Sanchez-Contreras, M., Lloret, J., de Carcer, D.A., Oruezabal, R.I., Bolanos, L., Macek, T., Karlson, U., Dowling, D.N., Martin, M., and Rivilla, R., Polychlorinated Biphenyl Rhizoremediation by Pseudomonas fluorescens F113 Derivatives, Using a Sinorhizobium meliloti Nod System To Drive bph Gene Expression, Appl. Environ. Microbiol., 2005, vol. 71, pp. 2687–2694.

    Article  PubMed  CAS  Google Scholar 

  63. Chen, Y.Q., Adam, A., Toure, O., and Dutta, S.K., Molecular Evidence of Genetic Modification of Sinorhizobium meliloti: Enhanced PCB Bioremediation, J. Ind. Microbiol. Biotechnol., 2005, vol. 32, pp. 561–566.

    Article  PubMed  CAS  Google Scholar 

  64. Manzano, M.A., Perales, J.A., Sales, D., and Quiroga, J.M., Enhancement of Aerobic Microbial Degradation of Polychlorinated Biphenyl in Soil Microcosms, Environ. Toxicol. Chem., 2003, vol. 22, pp. 699–705.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Vasilyeva.

Additional information

Original Russian Text © G.K. Vasilyeva, E.R. Strijakova, 2007, published in Mikrobiologiya, 2007, Vol. 76, No. 6, pp. 725–741.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilyeva, G.K., Strijakova, E.R. Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology 76, 639–653 (2007). https://doi.org/10.1134/S002626170706001X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626170706001X

Keywords

Navigation