Skip to main content
Log in

Biological properties of the wild rhizosphere strain Pseudomonas fluorescens 2137 and its derivatives marked with the gusA gene

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

he natural wild rhizosphere strain P. fluorescens 2137 was marked with the β-glucuronidase gene gusA. The introduction of this gene influenced the viability of the wild strain, as well as its certain physiological parameters, such as cultural characteristics, biochemical properties, and antagonistic activity against the phytopathogenic fungi Fusarium culmorum, F. oxysporum, F. graminearum, and Verticillum nigrescens. The gusA-marked derivative strains that deviate the least from the wild strain in biological properties can be used to monitor populations of P. fluorescens 2137 cells in the plant rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leshchinskaya, I.B., Modern Industrial Microbiology, Biologiya, 2000, vol. 6, no. 4, pp. 14–18.

    Google Scholar 

  2. Grishechkina, L.D., Microbiological Control of Cucumber Root Rot, Materialy dokl. Mezhd. nauch.-prakt. konf. posvyashch. 75-letiyu RASKhN “Biologicheskaya zashchita rastenii — osnova stabilizatsii agroekosistem,” (Proc. Int. Conf. on the Biological Control of Plant Diseases), Nadykty, V.D. et al., Issue 3, Krasnodar, 2004, pp. 225–228.

  3. Pal, K., Tilak, K., Saxena, A., Dey, R., and Singh, C., Suppression of Maize Root Diseases Caused by Macrophomina phaseolina, Fusarium moniliforme, and Fusarium graminearum by Plant Growth Promoting Rhizobacteria, Microbiol. Res., 2001, vol. 156, pp. 209–223.

    Article  PubMed  CAS  Google Scholar 

  4. Nagarajkumar, M., Bhaskaran, R., and Velazhahan, R., Involvement of Secondary Metabolites and Extracellular Lytic Enzymes Produced by Pseudomonas fluorescens in Inhibition of Rhizoctonia solani, the Rice Sheath Blight Pathogen, Microbiol. Res., 2004, vol. 159, pp. 73–81.

    Article  PubMed  CAS  Google Scholar 

  5. Dey, R., Pal, K., Bhatt, D., and Chauhan, S., Growth Promotion and Yield Enhancement of Peanut (Arachis hypogaea L.) by Application of Plant Growth-Promoting Rhizobacteria, Microbiol. Res., 2004, vol. 159, pp. 371–394.

    Article  PubMed  CAS  Google Scholar 

  6. Wilson, K., GusA as a Reporter Gene to Track Microbes, Molecular Microbial Ecology Manual, Akkermans, A.D. et al., Eds., Dordrecht: Kluwer Academic, 1995, pp. 85–100.

    Google Scholar 

  7. Herrero, M., de Lorenzo, V., and Timmis, K., Transposon Vectors Containing Non-Antibiotic Resistance Selection Markers for Cloning and Stable Chromosome Insertion of Foreign Genes in Gram-Negative Bacteria, J. Bacteriol., 1990, vol. 172, pp. 6557–6567.

    PubMed  CAS  Google Scholar 

  8. Wilson, K., Giller, K., and Jefferson, R., β-Glucuronidase (GUS) Operon Fusions as a Tool for Studying Plant-Microbe Interactions, Kluwer Academic, 1991, pp. 226–229.

  9. Bergey’s Manual of Determinative Bacteriology, 9th ed., Holt, J.G. et al., Eds., Baltimore: Williams & Wilkins, 1994. Translated under the title Opredelitel’ bakterii Berdzhi, Moscow: Mir, 1997.

    Google Scholar 

  10. Voznyakovskaya, Yu.M. and Popova, Zh.P., Metodicheskie ukazaniya po identifikatsii nesporovykh bakterii, dominiruyushchikh v rizosfere rastenii (Methodological Guide on the Identification of Dominant Non-Spore-Forming Bacteria in the Plant Rhizosphere), Leningrad: VIR, 1985.

    Google Scholar 

  11. Smirnov, V.V. and Kiprianova, E.A., Bakterii roda Pseudomonas (Bacteria of the Genus Pseudomonas), Kiev: Naukova Dumka, 1990.

    Google Scholar 

  12. Limeshchenko, E.V. and Chebotar’, V.K., The Use of the Genetic gus Marking Approach in Soil Microbiology with Reference to Pseudomonas fluorescens, Tez. dokl. Vseross. konf. “Mikrobiologiya pochv i zemledelie” (Proc. Conf. “Soil Microbiology and Agriculture”), St. Petersburg, 1998.

  13. Dreyfus, B.L., Elmerich, C., and Dommergues, Y.R., Free-Living Rhizobium Strain Able to Grow on N2 as the Sole Nitrogen Source, Appl. Environ. Microbiol., 1983, vol. 45, pp. 711–713.

    PubMed  Google Scholar 

  14. Egorov, N.S., Praktikum po mikrobiologii (Practical Course on Microbiology), Moscow: Mosk. Gos. Univ., 1976.

    Google Scholar 

  15. Vyazovaya, A.A., Limeshchenko, E.V., and Buren’, V.M., The Fungicidal Activity of Genetically Modified Derivatives of Pseudomonas fluorescens 2137, Gertsenovskie chteniya: Materialy mezhvuz konf. molodykh uchenykh (Proc. Int. Conf. of Young Scientists), St. Petersburg: TESSA, 2003, Issue 3, pp. 10–12.

    Google Scholar 

  16. Chan, Y.-K., Barraquio, W.L., and Knowles, R., N2-Fixing Pseudomonads and Related Soil Bacteria, FEMS Microbiol. Rev., 1994, vol. 13, pp. 95–118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vyazovaya.

Additional information

Original Russian Text © A.A. Vyazovaya, E.V. Limeshchenko, V.M. Buren’, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 5, pp. 689–695.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyazovaya, A.A., Limeshchenko, E.V. & Buren’, V.M. Biological properties of the wild rhizosphere strain Pseudomonas fluorescens 2137 and its derivatives marked with the gusA gene. Microbiology 75, 599–605 (2006). https://doi.org/10.1134/S0026261706050109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261706050109

Key words

Navigation