Skip to main content
Log in

“Oxygen regulation” of the respiratory chain composition in the yeast Debaryomyces hansenii under multiple stress

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

It was shown that two stress factors, hypoxia and hyperosmotic shock, if applied simultaneously to the yeast Debaryomyces hansenii, display an antagonistic mode of interaction, which results in an increased degree of halophily of this microorganism under microaerobic conditions. Studies of the effects of respiration inhibitors (sodium azide and salicyl hydroxamic acid, SHA) and of the pattern of changes in the composition of the respiratory chain of Debaryomyces hansenii under the stated stress conditions led to the suggestion of three (or four) chains of electron transfer functioning simultaneously in the cell: the classical respiratory chain involving cytochrome-c oxidase, an alternative respiratory chain involving a cyanide-and azide-resistant oxidase, and additional respiratory chains involving oxidases resistant to salt, azide and SHA. Thus, the antagonistic mode of interaction between hypoxia and hyperosmotic shock results from the redirection of the electron flow from the salt-susceptible respiratory systems to the salt-unsusceptible ones encoded by “the hypoxia genes” and activated (induced) under microaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Causton, H.C., Ren, B., Koh, S.S., Harrison, C.T., and Kanin, E., Remodeling of Yeast Genome Expression in Response To Environmental Changes, Mol. Biol. Cell, 2001, vol. 12, pp. 323–337.

    PubMed  CAS  Google Scholar 

  2. Kwast, K., Burke, P.V., and Poyton, R.O., Oxygen Sensing and Transcriptional Regulation of Oxygen-Responsive Genes in Yeast, J. Exp. Biology, 1998, vol. 201, pp. 1177–1195.

    CAS  Google Scholar 

  3. Zitomer, R.S. and Lowry, C.V., Regulation of Gene Expression by Oxygen in Saccharomyces cerevisiae, Microbiol. Rev., 1992, vol. 56, pp. 1–11.

    PubMed  CAS  Google Scholar 

  4. Arzumanyan, V.G., Voronina, N.A., Geidebrekht, O.V., Shelemekh, O.V., Plakunov, V.K., and Belyaev, S.S., Antagonistic Interactions between Stress Factors during the Growth of Microorganisms under Conditions Simulating the Parameters of Their Natural Ecotopes, Mikrobiologiya, 2002, vol. 71, no. 2, pp. 160–165 [Microbiology (Engl. Transl.), vol. 71, no. 2, pp. 133–138].

    Google Scholar 

  5. Geidebrekht, O.V., Arzumanyan, V.G., Plakunov, V.K., and Belyaev, S.S., Influence of the Degree of Aeration on Halotolerance of Yeasts of the Genera Candida, Rhodotorula, and Malassezia, Mikrobiologiya, 2003, vol. 72, no. 3, pp. 312–319 [Microbiology (Engl. Transl.), vol. 72, no. 2, pp. 270–276].

    CAS  Google Scholar 

  6. Prista, K., Loureiro-Dias, M.C., Montiel, V., Garsia, R., and Ramos, J., Mechanisms Underlying the Halotolerant Way of Debaryomyces hansenii, FEMS Yeast Res, 2005, vol. 5, pp. 693–701.

    Article  PubMed  CAS  Google Scholar 

  7. Shol’ts, K.F. and Ostrovskii, D.N., Polarographic Cell for the Quantitative Determination of Dissolved Oxygen, Lab. Delo, 1965, no. 6, pp. 375–378.

  8. Arzumanyan, V.G., Voronina, N.A., Plakunov, V.K., and Belyaev, S.S., The Degree of Halophily in Rhodococcus erythropolis and Halobacterium salinarum Depends on the Partial Pressure of Oxygen, Mikrobiologiya, 2000, vol. 69, no. 2, pp. 290–292 [Microbiology (Engl. Transl.), vol. 69, no. 2, pp. 238–240].

    Google Scholar 

  9. Moore, G., and Pettigrew, F., Cytochromes c, Berlin: Springer, 1987.

    Google Scholar 

  10. Guerin, M. and Camougrand, N., The Alternative Oxidase of Candida parapsilosis, Eur. J. Biochem., 1986, vol. 159, pp. 519–524.

    Article  PubMed  CAS  Google Scholar 

  11. Junemann, S. and Wrigglesworth, J.M., Cytochrome bd Oxidase from Azotobacter vinelandii, J. Biol. Chem., 1995, vol. 270, pp. 16213–16220.

    Article  PubMed  CAS  Google Scholar 

  12. De Gier, J.W.L., Lubben, M., Reijnders, W.N.M., Tipker, C.F., Slotboom, D.J., Van Spanning, R.J.M., Stouthamer, A.H., and Van der Oost, J., The Terminal Oxidases of Paracoccus denitrificans, Mol. Microbiol., 1994, vol. 13, pp. 183–196.

    PubMed  Google Scholar 

  13. Veiga, A., Arrabaca, J.D., and Louriro-Dias, M.C., Stress Situations Induce Cyanide-Resistant Respiration in Spoilage Yeasts, J. Appl. Microbiol., 2003, vol. 95, pp. 364–371.

    Article  PubMed  CAS  Google Scholar 

  14. Helmerhorst, E.J., Murphy, M.P., Troxler, R.F., and Oppenheim, F.G., Characterization of the Mitochondrial Respiratory Pathways in Candida albicans, Biochim. Biophys. Acta, 2002, vol. 1556, pp. 73–80.

    Article  PubMed  CAS  Google Scholar 

  15. Veiga, F., Arrabaca, J.D., Sansonetty, F., Ludovico, P., Corte-Real, M., and Loureiro-Dias, M.C., Energy Coupled to Cyanide-Resistant Respiration in the Yeasts Pichia membranifaciens and Debaryomyces hansenii, FEMS Yeast Res, 2003, vol. 3, pp. 141–148.

    Article  PubMed  CAS  Google Scholar 

  16. Medentsev, A.G., Arinbasarova, A.Yu., and Akimenko, V.K., Regulation and Physiological Role of Cyanide-Resistant Oxidases in Fungi and Plants, Biokhimiya, 1999, vol. 64, no. 11, pp. 1457–1472 [Biochemistry (Moscow) (Engl. transl.), vol. 64, no. 11, pp.1230–1243].

    Google Scholar 

  17. Medentsev, A.G., Arinbasarova, A.Yu., Golovchenko, N.P., and Akimenko, V.K., Involvement of the Alternative Oxidase in Respiration of Yarrowia lipolytica Mitochondria Is Controlled by the Activity of the Cytochrome Pathway, FEMS Yeast Research, 2002, vol. 2, pp. 519–524.

    PubMed  CAS  Google Scholar 

  18. Veiga, A., Arrabaca, J.D., and Loureiro-Dias, M.C., Cyanide-Resistant Respiration, a Very Frequent Metabolic Pathway in Yeasts, FEMS Yeast Research, 2003, vol. 3, pp. 239–245.

    Article  PubMed  CAS  Google Scholar 

  19. Guerin, M.G. and Camougrand, N.M., Partitioning of Electron Flux Between the Respiratory Chains of the Yeast Candida parapsilosis: Parallel Working of the Two Chains, Biochim. Biophys. Acta, 1994, vol. 1184, pp. 111–117.

    Article  PubMed  CAS  Google Scholar 

  20. Milani, G., Jarmuszkiewicz, W., Sluse-Goffart, C.M., Schreiber, A.Z., Vercesi, A.E., and Sluse, F.E., Respiratory Chain Network in Mitochondria of Candida Parapsilosis: ADP/O Appraisal of the Multiple Electron Pathways, FEBS Lett., 2001, vol. 508, pp. 231–235.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Plakunov.

Additional information

Original Russian Text © O. V. Shelemekh, O.V. Heidebrecht, V.K. Plakunov, S.S. Belyaev, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 4, pp. 562–569.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelemekh, O.V., Heidebrecht, O.V., Plakunov, V.K. et al. “Oxygen regulation” of the respiratory chain composition in the yeast Debaryomyces hansenii under multiple stress. Microbiology 75, 486–493 (2006). https://doi.org/10.1134/S0026261706040205

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261706040205

Key words

Navigation