Skip to main content
Log in

Novel Catalyst Systems Based on Cationic Palladium Cyclopentadienyl Complexes for the Polymerization of Norbornene and Norbornene Derivatives

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Results of studying the catalytic properties of systems based on complexes with [Pd(Cp)(L)n]m[BF4]m (where Cp = η5-C5H5; n = 2, m = 1: L = tris(ortho-methoxyphenyl)phosphine, triphenylphosphine, tris(2-furyl)phosphine (TFP); n = 1, m = 1: L = 1,1'-bis(diphenylphosphino)ferrocene, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, 1,5-bis(diphenylphosphino)pentane; n = 1, m = 2 or 3: L = 1,6-bis(diphenylphosphino)hexane) in the addition homo- and copolymerization of norbornene (NB) and NB derivatives have been described. It has been found that these complexes can be activated with Lewis acids (BF3⋅OEt2 or AlCl3). The productivity of the [Pd(Cp)(PPh3)2][BF4]/BF3⋅OEt2 catalyst system in NB polymerization can achieve 188 800 molNB \({\text{mol}}_{{{\text{Pd}}}}^{{ - 1}}\). The homopolymerization of 5-methoxycarbonylnorbornene and the copolymerization of NB with 5-methoxycarbonylnorbornene or 5-phenylnorbornene in the presence of BF3⋅OEt2 and [Pd(Cp)(L)2][BF4] (L = PPh3 or TFP) has been studied. A hypothesis for the formation of the catalyst via the intramolecular rearrangement of the η5-Cp ligand into the η1-Cp form upon interaction with a Lewis acid has been proposed. The structure of the [Pd(Cp)(TFP)2]BF4 complex (I) has been determined by X-ray diffraction (XRD) analysis. In the crystal structure of complex I, the coordination sphere of palladium is characterized by a slight distortion of the square planar geometry of the central atom, while the cyclopentadiyl moiety is in an eclipsed conformation. Based on XRD data, the steric hindrance of the TFP ligand has been determined (cone angle is 149°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Alentiev, D.A. and Bermeshev, M.V., Polym. Rev., 2022, vol. 62, no. 2, p. 400.

    Article  CAS  Google Scholar 

  2. Finkelshtein, E.S., Bermeshev, M.V., Gringolts, M.L., Starannikova, L.E., and Yampolskii, Y.P., Russ. Chem. Rev., 2011, vol. 80, no. 4, p. 341.

    Article  CAS  Google Scholar 

  3. Flid, V.R., Gringolts, M.L., Shamsiev, R.S., and Finkelshtein, E.Sh., Russ. Chem. Rev., 2018, vol. 87, no. 12, p. 1169.

    Article  CAS  Google Scholar 

  4. Bermeshev, M.V. and Chapala, P.P., Prog. Polym. Sci., 2018, vol. 84, p. 1.

    Article  CAS  Google Scholar 

  5. Suslov, D.S., Bykov, M.V., and Kravchenko, O.V., Polym. Sci. Ser. C, 2019, vol. 61, no. 1, p. 20.

    Article  Google Scholar 

  6. Janiak, C. and Lassahn, P.G., J. Mol. Catal. Chem., 2001, vol. 166, no. 2, p. 193.

    Article  CAS  Google Scholar 

  7. Blank, F. and Janiak, C., Coord. Chem. Rev., 2009, vol. 253, nos. 7–8, p. 827.

    Article  CAS  Google Scholar 

  8. Schrock, R.R., Acc. Chem. Res., 1990, vol. 23, no. 5, p. 158.

    Article  CAS  Google Scholar 

  9. Adzhieva, O.A., Gringolts, M.L., Denisova, Y.I., Shandryuk, G.A., Litmanovich, E.A., Nikiforov, R.Yu., Belov, N.A., and Kudryavtsev, Y.V., Polymers, 2023, vol. 15, no. 9, p. 2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gringolts, M.L., Denisova, Y.I., Finkelshtein, E.S., and Kudryavtsev, Y.V., Beilstein J. Org. Chem., 2019, vol. 15, p. 218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jang, E.S., John, J.M., and Schrock, R.R., J. Am. Chem. Soc., 2017, vol. 139, no. 14, p. 5043.

    Article  CAS  PubMed  Google Scholar 

  12. Vougioukalakis, G.C. and Grubbs, R.H., Chem. Rev., 2010, vol. 110, no. 3, p. 1746.

    Article  CAS  PubMed  Google Scholar 

  13. Ogba, O.M., Warner, N.C., O’Leary, D.J., and Grubbs, R.H., Chem. Soc. Rev., 2018, vol. 47, no. 12, p. 4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grubbs, R.H., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, no. 23, p. 3760.

    Article  CAS  PubMed  Google Scholar 

  15. Garber, S.B., Kingsbury, J.S., Gray, B.L., and Hoveyda, A.H., J. Am. Chem. Soc., 2000, vol. 122, no. 34, p. 8168.

    Article  CAS  Google Scholar 

  16. Mikus, M.S., Torker, S., and Hoveyda, A.H., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, no. 16, p. 4997.

    Article  CAS  PubMed  Google Scholar 

  17. Finkelshtein, E., Gringolts, M., Bermeshev, M., Chapala, P., and Rogan, Y., Polynorbornenes, in Membrane Materials for Gas and Vapor Separation, Yampolskii, Y. and Finkelshtein, E., Eds., Chichester, UK: Wiley, 2017.

    Google Scholar 

  18. Karpov, G.O. and Bermeshev, M.V., Dokl. Chem., 2020, vol. 495, no. 2, p. 195.

    Article  CAS  Google Scholar 

  19. Kaminsky, W., Polyolefins: 50 Years after Ziegler and Natta II. Polyolefins by Metallocenes and Other Single-Site Catalysts, Advances in Polymer Science, Berlin: Springer, 2013, vol. 258.

  20. Bermesheva, E.V., Medentseva, E.I., Khrychikova, A.P., Wozniak, A.I., Guseva, M.A., Nazarov, I.V., Morontsev, A.A., Karpov, G.O., Topchiy, M.A., Asachenko, A.F., Danshina, A.A., Nelyubina, Y.V., and Bermeshev, M.V., ACS Catal., 2022, vol. 12, no. 24, p. 15076.

    Article  CAS  Google Scholar 

  21. Hennis, A.D., Polley, J.D., Long, G.S., Sen, A., Yandulov, D., Lipian, J., Benedikt, G.M., Rhodes, L.F., and Huffman, J., Organometallics, 2001, vol. 20, no. 13, p. 2802.

    Article  CAS  Google Scholar 

  22. Yamashita, M., Takamiya, I., Jin, K., and Nozaki, K., Organometallics, 2006, vol. 25, no. 19, p. 4588.

    Article  CAS  Google Scholar 

  23. Kim, D.-G., Bell, A., and Register, R.A., ACS Macro Lett., 2015, vol. 4, no. 3, p. 327.

    Article  CAS  PubMed  Google Scholar 

  24. Walter, M.D., White, P.S., and Brookhart, M.S., Chem. Commun., 2009, no. 42, p. 6361.

  25. Walter, M.D., Moorhouse, R.A., Urbin, S.A., White, P.S., Brookhart, M.S., and Carolina, N., J. Am. Chem. Soc., 2009, vol. 131, no. 25, p. 9055.

    Article  CAS  PubMed  Google Scholar 

  26. Goodall, B.L., Late transition metal catalysts for the copolymerization of olefins and polar monomers, in Topics in Organometallic Chemistry, 2009, vol. 26, p. 159.

    CAS  Google Scholar 

  27. Pérez-Ortega, I. and Albéniz, A.C., Polym. Chem., 2022, vol. 13, no. 28, p. 4154.

    Article  Google Scholar 

  28. Bermesheva, E.V., Wozniak, A.I., Bermeshev, M.V., Asachenko, A.F., Topchiy, M.A., Nechaev, M.S., Filatova, M.P., and Khrychikova, A.P., Polym. Sci. Ser. B, 2020, vol. 62, no. 4, p. 319.

    Article  CAS  Google Scholar 

  29. Bermesheva, E.V., Wozniak, A.I., Andreyanov, F.A., Karpov, G.O., Nechaev, M.S., Asachenko, A.F., Topchiy, M.A., Melnikova, E.K., Nelyubina, Y.V., Gribanov, P.S., and Bermeshev, M.V., ACS Catal., 2020, vol. 10, no. 3, p. 1663.

    Article  CAS  Google Scholar 

  30. Blank, F., Vieth, J.K., Ruiz, J., Rodriguez, V., and Janiak, C., J. Organomet. Chem., 2011, vol. 696, no. 2, p. 473.

    Article  Google Scholar 

  31. Kaita, S., Matsushita, K., Tobita, M., Maruyama, Y., and Wakatsuki, Y., Macromol. Rapid Commun., 2006, vol. 27, no. 20, p. 1752.

    Article  CAS  Google Scholar 

  32. Suslov, D.S., Bykov, M.V., Pakhomova, M.V., Orlov, T.S., Abramov, Z.D., Suchkova, A.V., Ushakov, I.A., Abramov, P.A., and Novikov, A.S., Molecules, 2023, vol. 28, no. 10, p. 4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshida, I., Kobayashi, H., and Ueno, K., J. Inorg. Nucl. Chem., 1973, vol. 35, no. 12, p. 4061.

    Article  CAS  Google Scholar 

  34. Suslov, D.S., Bykov, M.V., Abramov, P.A., Pahomova, M.V., Ushakov, I.A., Voronov, V.K., and Tkach, V.S., RSC Adv., 2015, vol. 5, no. 126, p. 104467.

    Article  CAS  Google Scholar 

  35. Suslov, D.S., Bykov, M.V., Belova, M.V., Abramov, P.A., and Tkach, V.S., J. Organomet. Chem., 2014, vol. 752, p. 37.

    Article  CAS  Google Scholar 

  36. Suslov, D.S., Bykov, M.V., Pakhomova, M.V., Abramov, P.A., Ushakov, I.A., and Tkach, V.S., Catal. Commun., 2017, vol. 94, p. 69.

    Article  CAS  Google Scholar 

  37. Suslov, D.S., Bykov, M.V., Pakhomova, M.V., Abramov, Z.D., Ratovskii, G.V., Ushakov, I.A., Borodina, T.N., Smirnov, V.I., and Tkach, V.S., J. Mol. Struct., 2020, vol. 1217, p. 128425.

    Article  CAS  Google Scholar 

  38. Suslov, D.S., Bykov, M.V., Abramov, Z.D., Ushakov, I.A., Borodina, T.N., Smirnov, V.I., Ratovskii, G.V., and Tkach, V.S., J. Organomet. Chem., 2020, vol. 923, p. 121413.

    Article  CAS  Google Scholar 

  39. Bergstrom, C., Koskinen, J., Halme, E., Lindstrom, M., and Perala, M., US Patent 6294706, 2003.

  40. Chun, S.H., Kim, W.-K., Yoon, S.-C., Kim, K.-H., Lee, J.-M., Paik, K.-L., and Ahn, S.-D., US Patent 7442752, 2003.

  41. Suslov, D.S., Bykov, M.V., Kuzmin, A.V., Abramov, P.A., Kravchenko, O.V., Pakhomova, M.V., Rokhin, A.V., Ushakov, I.A., and Tkach, V.S., Catal. Commun., 2018, vol. 106, p. 30.

    Article  CAS  Google Scholar 

  42. Mathew, J.P., Reinmuth, A., Melia, J., Swords, N., and Risse, W., Macromolecules, 1996, vol. 29, no. 8, p. 2755.

    Article  CAS  Google Scholar 

  43. Delpech, M.C., Coutinho, F.M.B., and Habibe, M.E.S., Polym. Test., 2002, vol. 21, p. 411.

    Article  CAS  Google Scholar 

  44. Yao, Z., Liu, S., Lv, F., and Cao, K., J. Appl. Polym. Sci., 2008, vol. 109, no. 6, p. 4010.

    Article  CAS  Google Scholar 

  45. Patil, A.O., Zushma, S., Stibrany, R.T., Rucker, S.P., and Wheeler, L.M., J. Polym. Sci. Part Polym. Chem., 2003, vol. 41, no. 13, p. 2095.

    Article  CAS  Google Scholar 

  46. Sheldrick, G.M., Acta Crystallogr. Sect. A. Found. Adv., 2015, vol. A71, no. 1, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  47. Sheldrick, G.M., Acta Crystallogr. Sect. C. Struct. Chem., 2015, vol. C71, no. 1, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  48. Hübschle, C.B., Sheldrick, G.M., and Dittrich, B., J. Appl. Crystallogr., 2011, vol. 44, no. 6, p. 1281.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Coville, N.J. and Du Plooy, K.E., Inorg. Chim. Acta, 1993, vol. 209, no. 1, p. 5.

    Article  CAS  Google Scholar 

  50. Cross, R.J., Hoyle, R.W., Kennedy, A.R., Manojlovic-Muir, L., and Muir, K.W., J. Organomet. Chem., 1994, vol. 468, nos. 1–2, p. 265.

    Article  CAS  Google Scholar 

  51. Manojlović-Muir, L., Cross, R.J., and Hoyle, R.W., Acta Crystallogr. C, 1993, vol. 49, no. 9, p. 1603.

    Article  Google Scholar 

  52. Bachechi, F., Lehmann, R., and Venanzi, L.M., J. Crystallogr. Spectrosc. Res., 1988, vol. 18, no. 6, p. 721.

    Article  CAS  Google Scholar 

  53. Meijboom, R. and Muller, A., Acta Crystallogr. Sect. E. Struct. Rep. Online, 2006, vol. 62, no. 10, p. m2642.

    Article  CAS  Google Scholar 

  54. Bykov, M.V., Abramov, Z.D., Orlov, T.S., Pakhomova, M.V., Borodina, T.N., Smirnov, V.I., and Suslov, D.S., J. Struct. Chem., 2021, vol. 62, no. 8, p. 1218.

    Article  CAS  Google Scholar 

  55. Janiak, C., Lange, K.C.H., Versteeg, U., Lentz, D., and Budzelaar, P.H.M., Chem. Ber., 1996, vol. 129, no. 12, p. 1517.

    Article  CAS  Google Scholar 

  56. Ackermann, M., Pascariu, A., Hocher, T., Siehl, H.U., and Berger, S., J. Am. Chem. Soc., 2006, vol. 128, no. 26, p. 8434.

    Article  CAS  PubMed  Google Scholar 

  57. Tolman, C.A., Chem. Rev., 1977, vol. 77, no. 3, p. 313.

    Article  CAS  Google Scholar 

  58. Tolman, C.A., J. Am. Chem. Soc., 1970, vol. 92, no. 10, p. 2953.

    Article  CAS  Google Scholar 

  59. Hirsivaara, L., Guerricabeitia, L., Haukka, M., Suomalainen, P., Laitinen, R.H., Pakkanen, T.A., and Pursiainen, J., Inorg. Chim. Acta, 2000, vol. 307, nos. 1–2, p. 48.

    Article  Google Scholar 

  60. Andersen, N.G. and Keay, B.A., Chem. Rev., 2001, vol. 101, no. 4, p. 997.

    Article  CAS  PubMed  Google Scholar 

  61. Lassahn, P., Lozan, V., Wu, B., Weller, A.S., and Janiak, C., Dalton Trans., 2003, no. 23, p. 4437.

  62. van Leeuwen, P.W.N.M., Kamer, P.C.J., Reek, J.N.H., and Dierkes, P., Chem. Rev., 2000, vol. 100, no. 8, p. 2741.

    Article  CAS  PubMed  Google Scholar 

  63. van Haaren, R.J., Goubitz, K., Fraanje, J., van Strijdonck, G.P.F., Oevering, H., Coussens, B., Reek, J.N.H., Kamer, P.C.J., and van Leeuwen, P.W.N.M., Inorg. Chem., 2001, vol. 40, no. 14, p. 3363.

    Article  CAS  PubMed  Google Scholar 

  64. Mi, X., Ma, Z., Cui, N., Wang, L., Ke, Y., and Hu, Y., J. Appl. Polym. Sci., 2003, vol. 88, no. 14, p. 3273.

    Article  CAS  Google Scholar 

  65. Kim, K.H., Han, Y.-K., Lee, S.U., Chun, S.-H., and Ok, J.H., J. Mol. Model., 2003, vol. 9, no. 5, p. 304.

    Article  CAS  PubMed  Google Scholar 

  66. Muller, T.E. and Mingos, D.M.P., Transit. Met. Chem., 1995, vol. 20, no. 6, p. 533.

    Article  Google Scholar 

  67. Batsanov, S.S., Inorg. Mater., 2001, vol. 37, no. 9, p. 871.

    Article  CAS  Google Scholar 

  68. Alvarez, S., Dalton Trans., 2013, vol. 42, no. 24, p. 8617.

    Article  CAS  PubMed  Google Scholar 

  69. Commarieu, B. and Claverie, J.P., Chem. Sci. RSC, 2015, vol. 6, no. 4, p. 2172.

    Article  CAS  Google Scholar 

  70. Huang, R., He, X., Chen, Y., Nie, H., and Zhou, W., Polym. Adv. Technol., 2012, vol. 23, no. 3, p. 483.

    Article  CAS  Google Scholar 

  71. Morishita, H., Sudo, A., and Endo, T., J. Polym. Sci. Part Polym. Chem., 2009, vol. 47, no. 16, p. 3982.

    Article  CAS  Google Scholar 

  72. Park, J.H., Yun, C., Park, M.H., Do, Y., Yoo, S., and Lee, M.H., Macromolecules, 2009, vol. 42, no. 18, p. 6840.

    Article  CAS  Google Scholar 

  73. Saito, T. and Wakatsuki, Y., Polymer, 2012, vol. 53, no. 2, p. 308.

    Article  CAS  Google Scholar 

  74. Takamiya, I., Yamashita, M., and Nozaki, K., Organometallics, 2008, vol. 27, no. 20, p. 5347.

    Article  CAS  Google Scholar 

  75. Xing, Y., Chen, Y., and He, X., J. Polym. Sci. Part Polym. Chem., 2011, vol. 49, no. 20, p. 4425.

    Article  CAS  Google Scholar 

  76. Chen, L., Zhong, Z., Chen, C., He, X., and Chen, Y., J. Organomet. Chem., 2014, vol. 752, p. 100.

    Article  CAS  Google Scholar 

  77. Bennett, M.J., Cotton, F.A., Davison, A., Faller, J.W., Lippard, S.J., and Morehouse, S.M., J. Am. Chem. Soc., 1966, vol. 88, no. 19, p. 4371.

    Article  CAS  Google Scholar 

  78. Radius, U., Sundermeyer, J., Peters, K., Von Schnering, H.-G., Eur. J. Inorg. Chem., 2001, vol. 2001, no. 6, p. 1617.

    Article  Google Scholar 

  79. Werner, H. and Kraus, H.-J., Angew. Chem., Int. Ed. Engl., 1979, vol. 18, no. 12, p. 948.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Center for collective use of analytical equipment of Irkutsk State University (http://ckp-rf.ru/ckp/3264/). P.A. Abramov acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation for characterizing the samples using the instrumentation base of the Center for collective use of Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (grant no. 22-23-00862, https://rscf.ru/project/22-23-00862/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Suslov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations and notation: Aav, average activity of catalyst systems, which is calculated as the ratio of the weight of the synthesized polymer to the reaction time and the amount of the loaded transition metal compound; dppf, 1,1'-bis(diphenylphosphino)ferrocene; dppp, 1,3-bis(diphenylphosphino)propane; dppb, 1,4-bis(diphenylphosphino)butane; dpppt, 1,5-bis(diphenylphosphino)pentane; dpph, 1,6-bis(diphenylphosphino)hexane; TOMPP, tris(ortho-methoxyphenyl)phosphine; TON, turnover number of the catalyst; TFP, tris(2-furyl)phosphine; NB, norbornene; NBE, 5-methoxycarbonylnorbornene; PhNB, 5-phenylnorbornene; THF, tetrahydrofuran; XRD, X-ray diffraction analysis; Mη, viscosity-average molecular weight; Mw, weight-average molecular weight; Mn, number-average molecular weight; (M)MAO, modified methylaluminoxane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslov, D.S., Pakhomova, M.V., Bykov, M.V. et al. Novel Catalyst Systems Based on Cationic Palladium Cyclopentadienyl Complexes for the Polymerization of Norbornene and Norbornene Derivatives. Kinet Catal 65, 40–56 (2024). https://doi.org/10.1134/S0023158424010087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158424010087

Keywords:

Navigation