Skip to main content
Log in

Hydrogenation of CO2 on MoO3/Al2O3 and γ-Al2O3

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The physicochemical and catalytic (CO2 hydrogenation) characteristics of Mo-containing catalysts were studied. The catalysts containing 8 and 15 wt % Mo oxide were prepared by impregnation of γ‑Al2O3 with ammonium paramolybdate, followed by drying and calcination at 500°C. The introduction of Mo oxide reduced the pore volume of the support and increased the average pore size, indicating that molybdenum oxide was distributed in the support pores. According to the X-ray diffraction analysis, the calcinated catalyst did not contain the crystalline MoO3 phase. According to the Raman spectra, oxygen-containing formations were present on the catalyst surface, with Mo atoms tetrahedrally and octahedrally coordinated to the oxygen atoms. The impregnated MoO3 was partially reduced with hydrogen during linear heating, starting from 320°C. The hydrogenation of CO2 (gas composition, vol %: 30.7 CO2, 68 H2, the rest was N2; 0.5 g sample) was studied under conditions of linear heating to 400°C. The main reaction was the reverse reaction of CO steam reforming. The contribution of methanation to CO2 hydrogenation was small. An increase in the temperature and pressure had a positive effect on CO2 conversion. When the pressure increased from 1 to 5 MPa, the CO content was approximately doubled. In the CO2 hydrogenation, appreciable activity (although significantly lower compared to that of Mo-containing catalysts) was also exhibited by γ-Al2O3, preliminarily heated to 400°C in an H2 flow. The activity of alumina also increased with pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Leonzio, G., J. CO 2 Util., 2018, vol. 27, p. 326.

  2. Joo, O.-S., Jung, K.-D., Moon, I., Rozovskii, A.Ya., Lin, G.I., Han, S.-H., and Uhm, S.-J., Ind. Eng. Chem. Res., 1999, vol. 38, p. 1808.

    Article  CAS  Google Scholar 

  3. Vibhatavata, P., Borgard, J.-M., Tabarant, M., Bianchi, D., and Mansilla, C., Int. J. Hydrogen Energy, 2013, vol. 38, p. 6397.

    Article  CAS  Google Scholar 

  4. Martin, N. and Cirujano, F.G., J. CO 2 Util., 2022, vol. 65, p. 102176.

  5. Zhou, W., Kang, J., Cheng, K., He, S., Shi, J., Zhou, C., Zhang, Q., Chen, J., Peng, L., Chen, M., and Wang, Y., Angew. Chem., Int. Ed. Engl., 2018, vol. 57, p. 12012.

    Article  CAS  PubMed  Google Scholar 

  6. Li, Z., Wang, J., Qu, Y., Liu, H., Tang, C., Miao, S., and Feng, Z., An, H., and Li, C., ACS Catal., 2017, vol. 7, p. 8544.

    Article  CAS  Google Scholar 

  7. Busca, G., Heterogeneous Catalytic Materials. Solid State Chemistry, Surface Chemistry and Catalytic Behavior, Amsterdam: Elsevier, 2014, ch. 9.

    Google Scholar 

  8. Kunkes, E. and Behrens, M., Methanol chemistry, in Chemical Energy Storage, Schlögl, R., Berlin: De Gruyter Textbook, 2013, p. 413.

  9. Etim, U.J., Zhang, C., and Zhong, Z., Nanomaterials, 2021, vol. 11, p. 3265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng, F., Yang, G., Li, B., and Li, Z., Appl. Catal. A: Gen., 2022, vol. 646, p. 118884.

    Article  CAS  Google Scholar 

  11. Wang, J., Zhang, G., Zhu, J., Zhang, X., Ding, F., Zhang, A., Guo, X., and Song, C., ACS Catal., 2021, vol. 11, p. 1406.

    Article  CAS  Google Scholar 

  12. Li, Y., Chen, X., Zhang, M., Zhu, Y., Ren, W., Mei, Z., Gu, M., and Pan, F., Catal. Sci. Technol., 2019, vol. 9, p. 803.

    Article  CAS  Google Scholar 

  13. Kim, H.-S., Cook, J.B., Lin, H., Ko, J.S., Tolbert, S.H., Ozolins, V., and Dunn, B., Nature Mater., 2017, vol. 16, p. 454.

    Article  CAS  Google Scholar 

  14. Noby, S.Z., Fakharuddin, A., Schupp, S., Sultan, M., Krumova, M., Drescher, M., Azarkh, M., Boldt, K., and Schmidt-Mende, L., Mater. Adv., 2022, vol. 3, p. 3571.

    Article  CAS  Google Scholar 

  15. Zhu, M., Tian, P., Ford, M.E., Chen, J., Xu, J., Han, Y.-F., and Wachs, I.E., ACS Catal., 2020, vol. 10, p. 7857.

    Article  CAS  Google Scholar 

  16. Sinev, M.Yu., Kinet. Katal., 2019, vol. 60, no. 4, p. 450.

    Article  Google Scholar 

  17. Doornkamp, C. and Ponec, V., J. Mol. Catal. A. Chem., 2000, vol. 162, p. 19.

    Article  CAS  Google Scholar 

  18. Kipnis, M.A., Samokhin, P.V., Volnina, E.A., Magomedova, M.V., and Turkova, T.V., Kinet. Catal., 2022, vol. 63, no. 3, p. 292.

    Article  CAS  Google Scholar 

  19. Guinier, A., Theorie et Technique de la Radiocristallographie, Paris: Dunod, 1956.

    Google Scholar 

  20. Kipnis, M.A., Samokhin, P.V., Belostotskii, I.A., and Turkova, T.V., Catal. Ind., 2018, vol. 10, no. 2, p. 97.

    Article  Google Scholar 

  21. Raman Spectra Library. https://ramanlife.com/library. Accessed February 17, 2023.

  22. Seguin, L., Figlarz, M., Cavagnat, R., Lassègues, J.-C., Spectrochim. Acta, Part A, 1995, vol. 51, p. 1323.

    Article  Google Scholar 

  23. Knözinger, H. and Jeziorowski, H., J. Phys. Chem., 1978, vol. 82, no. 18, p. 2002.

    Article  Google Scholar 

  24. Hu, H. and Wachs, I.E., Bares.r, J. Phys. Chem., 1995, vol. 99, no. 27, p. 10897.

    Article  CAS  Google Scholar 

  25. Liu, X., Yang, L., Huang, M., Li, Q., Zhao, L., Sang, Y., Zhang, X., Zhao, Z., Liu, H., and Zhou, W., Appl. Catal. B: Environ., 2022, vol. 319, p. 121887.

    Article  CAS  Google Scholar 

  26. Catalyst Handbook, Twigg, M., Ed., Wolfe Publishing, 1989.

    Google Scholar 

  27. Joubert, J., Salameh, A., Krakoviack, V., Delbecq, F., Sautet, P., Coperet, C., and Basset, J.M., J. Phys. Chem. B, vol. 110, p. 23944.

  28. Ferri, D., Bürgi, T., and Baiker, A., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 2667.

    Article  CAS  Google Scholar 

  29. Rabee, A.I.M., Zhao, D., Cisneros, S., Kreyenschulte, C.R., Kondratenko, V., Bartling, S., Kubis, C., Kondratenko, E.V., Bruckner, A., and Rabeah, J., Appl. Catal. B: Environ., 2023, vol. 321, p. 122083.

    Article  CAS  Google Scholar 

  30. Yang, Y.-N., Huang, C.-W., Nguyen, V.-H., and Wu, J.C.-S., Catal. Commun., 2022, vol. 162, p. 106373.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Centre of Collective Usage “Analytical Center for Problems of Advanced Oil Refining and Petrochemistry” at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, and “New Petrochemical Processes, Polymer Composites, and Adhesives.”

Funding

This study was supported by the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kipnis.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: DSC is the differential scanning calorimetry; DTG, differential thermogravimetry; TCD, thermal conductivity detector; TG, thermogravimetry; XRD, X-ray diffraction analysis; BET, Brunauer–Emmett–Teller method; BJH, Barrett–Joyner–Halenda method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipnis, M.A., Samokhin, P.V., Galkin, R.S. et al. Hydrogenation of CO2 on MoO3/Al2O3 and γ-Al2O3. Kinet Catal 65, 57–65 (2024). https://doi.org/10.1134/S0023158424010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158424010038

Keywords:

Navigation