Skip to main content
Log in

Properties of Palladium-Phosphorus Catalysts Supported on HZSM-5 Zeolite in Direct Synthesis of Hydrogen Peroxide

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The properties of Pd/HZSM-5 and Pd–nP/HZSM-5 catalysts were studied in direct synthesis and side processes of decomposition and hydrogenation of H2O2 under mild conditions in ethanol and aqueous ethanol in the presence of an acid inhibitor. It was shown, using HRTEM, XRD, and ICP MS methods, that modification with phosphorus led to the formation of highly dispersed X-ray amorphous systems, which are structurally disordered solid solutions of phosphorus in palladium. The main factors governing the promoting effect of phosphorus on the yield of H2O2 are considered. It was established that the use of a zeolite support in the H form, along with the phosphorus and acid modifiers, inhibits the side process of H2O2 decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Brehm, J., Lewis, R.J., Morgan, D.J., Davies, T.E., and Hutchings, G.J., Catal. Lett., 2022, vol. 152, p. 254.

    Article  CAS  Google Scholar 

  2. Menegazzo, F., Signoretto, M., Ghedini, E., and Strukul, G., Catalysts, 2019, vol. 9, no. 3, p. 251.

    Article  Google Scholar 

  3. Blanco-Brieva, G., Desmedt, F., Miquel, P., Campos-Martin, J.M., and Fierro, J.L.G., Catalysts, 2022, vol. 12, p. 796.

    Article  CAS  Google Scholar 

  4. Ranganathan, S. and Sieber, V., Catalysts, 2018, vol. 8, no. 9, p. 379.

    Article  Google Scholar 

  5. Mukhortova, L.I., Efimov, Yu.T., Glushkov, I.V., and Konstantinova. T.G., Khimiya i tekhnologiya peroksida vodoroda: uchebnoe posobie (Chemistry and Technology of Hydrogen Peroxide: Textbook), Cheboksary: Izd. Chuvash. Univ., 2020.

    Google Scholar 

  6. Liang, J., Wang, F., Li, W., Zhang, J., and Guo, C.-L., Mol. Catal., 2022, vol. 524, p. 112264.

    Article  CAS  Google Scholar 

  7. Lewis, R.J., Koy, M., Macino, M., Das, M., Carter, J.H., Morgan, D.J., Davies, T.E., Ernst, J.B., Freakley, S.J., Glorius, F., and Hutchings, G.J., J. Am. Chem. Soc., 2022, vol. 144, p. 15431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campos-Martin, J.M., Blanco-Brieva, G., and Fierro, G., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, no. 42, p. 6962.

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, J. and Hutchings, G.J., ChemCatChem, 2019, vol. 11, p. 298.

    Article  CAS  Google Scholar 

  10. Gemo, B.N., Salmi, T., and Biasi, P., React. Chem. Eng., 2016, vol. 1, p. 300.

    Article  CAS  Google Scholar 

  11. Barnes, A., Lewis, R.J., Morgan, D.J., Davies, T.E., and Hutchings, G.J., Catal. Sci. Technol., 2022, vol. 12, p. 1986.

    Article  CAS  Google Scholar 

  12. Han, G.-H., Lee, S.-H., Hwang, S.-Y., and Lee, K.-Y., Adv. Energy Mater., 2021, p. 2003121.

  13. Liu, Y., McCue, A.J., and Li, D., ACS Catal., 2021, vol. 11, p. 9102.

    Article  CAS  Google Scholar 

  14. Wang, Y., Nuzhdin, A.L., Shamanaev, I.V., and Bukhtiyarova, G.A., Kinet. Catal., 2022, vol. 63, no. 6, p. 660.

    Article  CAS  Google Scholar 

  15. Zhurenok, A.V., Markovskaya, D.V., Potapenko, K.O., Cherepanova, S.V., Saraev, A.A., Gerasimov, E.Yu., and Kozlova, E.A., Kinet. Catal., 2022, vol. 63, no. 3, p. 248.

    Article  CAS  Google Scholar 

  16. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Milenkaya, E.A., Kornaukhova, T.A., and Schmidt, F.K., Appl. Catal. A: Gen., 2023, vol. 664, p. 119330.

    Article  CAS  Google Scholar 

  17. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., Likhatski, M.N., Milenkaya, E.A., Kornaukhova, T.A., and Schmidt, F.K., Kinet. Catal., 2023, vol. 64, no. 6, p. 804.

    Article  CAS  Google Scholar 

  18. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New-York: Wiley & Sons, 1972.

  19. Armarego, W.L.F. and Christina, L.L.C., Purification of Laboratory Chemicals, Elsevier, 2009, 6th ed.

    Google Scholar 

  20. Matthews, J.C., Nashua, N.H., and Wood, L.L., US Patent 3474464, 1969.

  21. Sandri, F., Danieli, M., Zecca, M., and Centomo, P., ChemCatChem, 2021, vol. 13, p. 2653.

    Article  CAS  Google Scholar 

  22. Belykh, L.B., Skripov, N.I., Belonogova, L.N., Umanets, V.A., and Schmidt, F.K., Kinet. Catal., 2010, vol. 51, no. 1, p. 42.

    Article  CAS  Google Scholar 

  23. Skripov, N.I., Belykh, L.B., Belonogova, L.N., Umanets, V.A., Ryzhkovich E.N., and Schmidt F.K., Kinet. Catal., 2010, vol. 51, no. 5, p. 714.

    Article  CAS  Google Scholar 

  24. Belykh, L.B., Skripov, N.I., Belonogova, L.N., Rokhin, A.V., and Schmidt, F.K., Russ. J. Gen. Chem., 2009, vol. 79, no. 1, p. 92.

    Article  CAS  Google Scholar 

  25. Nikolaev, S.A., Zanaveskin, L.N., Smirnov, V.V., Averyanov, V.A., and Zanaveskin, K.L., Russ. Chem. Rev., 2009, vol. 78, p. 231.

    Article  CAS  Google Scholar 

  26. Belykh, L.B., Sterenchuk, T.P., Skripov, N.I., Akimov, V.V., Tauson, V.L., Romanchenko, A.S., Gvozdovskaya, K.L., Sanzhieva, S.B., and Shmidt, F.K., Kinet. Catal., 2019, vol. 60, no. 6, p. 808.

    Article  CAS  Google Scholar 

  27. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., Schmidt, F.K., Russ. J. Gen. Chem., 2016, vol. 86, no. 9, p. 2022.

    Article  CAS  Google Scholar 

  28. Shi, Y., Elnabawy, A.O., Gilroy, K.D., Hood, Z.D., Chen, R., Wang, C., Mavrikakis, M., and Xia, Y., ChemCatChem, 2022, vol. 14, no. 16, p. e202200475.

    Article  CAS  Google Scholar 

  29. Cao, K., Yang, H., Bai, S., Xu, Y., Yang, C., Wu, Y., Xie, M., Cheng, T., Shao, Q., and Huang, X., ACS Catal., 2021, vol. 11, p. 1106.

    Article  CAS  Google Scholar 

  30. Jeong, H.E., Kim, S., Seo, M.-G., Lee, D.-W., and Lee, K.-Y., J. Mol. Catal. A: Chem., 2016, vol. 420, p. 88.

    Article  CAS  Google Scholar 

  31. Wilson, N.M. and Flaherty, D.W., J. Am. Chem. Soc., 2016, vol. 138, p. 574.

    Article  CAS  PubMed  Google Scholar 

  32. Tian, P., Ouyang, L., Xu, X., Ao, C., Xu, X., Si, R., Shen, X., Lin, M., Xu, J., and Han, Y.-F., J. Catal., 2017, vol. 349, p. 30.

    Article  CAS  Google Scholar 

  33. Chen, L., Medlin, J.W., and Gronbeck, H., ACS Catal., 2021, vol. 11, p. 2735.

    Article  CAS  Google Scholar 

  34. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., Milenkaya, E.A., and Schmidt, F.K., Eur. J. Inorg. Chem., 2021, vol. 44, p. 4586.

    Article  Google Scholar 

  35. Clausen, B.S., Topsoe, H., and Frahm, R., Adv. Catal., 1998, vol. 42, p. 315.

    Article  CAS  Google Scholar 

  36. Deschner, B.J., Doronkin, D.E., Sheppard, T.L., Zimina, A., Grunwaldt, A., and Dittmeyer, R., J. Phys. Chem. C, 2021, vol. 125, p. 3451.

    Article  CAS  Google Scholar 

  37. Flanagan, B.T.B., Biehl, G.E., Clewley, J.D., Kundqvist, S., and Anderson, Y., J. Chem. Soc., Faraday Trans., 1980, vol. 76, p. 196.

    Article  CAS  Google Scholar 

  38. Belykh, L.B., Skripov, N.I., Akimov, V.V., Tauson, V.L., Stepanova, T.P., and Schmidt, F.K., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2260.

    Article  CAS  Google Scholar 

  39. Ott, L.S. and Finke, R.G., Coord. Chem. Rev., 2007, vol. 251, p. 1075.

    Article  CAS  Google Scholar 

  40. Han, G.-H., Lee, S.-H., Hwang, S.-Y., and Lee, K.-Y., Adv. Energy Mater., 2021, p. 2003121.

  41. Hu, B., Deng, W., Li, R., Zhang, Q., Wang, Y., Delplanque-Janssens, F., Paul, F., Desmedt, F., and Miquel, P., J. Catal., 2014, vol. 319, p. 15.

    Article  CAS  Google Scholar 

  42. Zhang, J., Shao, Q., Zhang, Y., Bai, S., Feng, Y., and Huang, X., Small, 2018, vol. 14, p. 1703990.

    Article  Google Scholar 

  43. Liang, W., Fu, J., Chen, H., Zhang, X., and Deng, G., Mater. Lett., 2021, vol. 283, p. 128857.

    Article  CAS  Google Scholar 

  44. Richards, T., Lewis, R.J., Morgan, D.J., and Hutchings, G.J., Catal. Lett., 2023, vol. 153, p. 32.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Multiaccess Center of Irkutsk State University, Baikal Center for Nanotechnologies of Irkutsk National Research Technical University (Tecnai G2 electron microscope), and Multiaccess Center for Isotope Geochemical Research (ELEMENT 2 high-resolution mass spectrometer). The HZSM-5 zeolite was provided by S.A. Skornikova.

Funding

This study was supported by the Russian Science Foundation, project no. 22-23-00836, https://rscf.ru/project/22-23-00836/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Belykh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations and designations: TEM is transmission electron microscopy; HRTEM, high-resolution transmission electron microscopy; XRD, X-ray diffraction analysis; ICP-MS, inductively coupled plasma mass spectrometry; DMF, N,N-dimethylformamide; TOF, turnover frequency; D, dispersity; d, particle diameter; S, selectivity; X, conversion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, L.B., Skripov, N.I., Milenkaya, E.A. et al. Properties of Palladium-Phosphorus Catalysts Supported on HZSM-5 Zeolite in Direct Synthesis of Hydrogen Peroxide. Kinet Catal 65, 155–167 (2024). https://doi.org/10.1134/S0023158423601249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423601249

Keywords:

Navigation