Skip to main content
Log in

Kinetic Mechanisms of the Photocatalytic Generation of Hydrogen from Formic Acid Using Metal–Ceramic Composites under Visible-Light Irradiation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic generation of hydrogen from aqueous solutions of formic acid under irradiation with visible light with the use of tantalum-containing metal–ceramic composites based on silicon nitride was investigated depending on the substrate concentration and the pH of suspension in the absence and with the addition of hydrogen peroxide. These compounds were obtained by self-propagating high temperature synthesis (SHS) using the combustion of ferrosilicon aluminum (FSA) and a mixture of silicon and aluminum powders with tantalum additives in an atmosphere of nitrogen. It was found that the dependence of the rate of photocatalytic hydrogen production on the concentration of formic acid without hydrogen peroxide was described by the Langmuir–Hinshelwood mechanism. In the presence of hydrogen peroxide, the rate of the photocatalytic process sharply increased with the concentration of formic acid. The highest rate of hydrogen evolution from formic acid was observed on an iron-containing composite synthesized from FSA without the addition of hydrogen peroxide, and it amounted to 4.55 µmol/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Jamali-Sheini, F., Cheraghizade, M., and Yousefi, R., Solid State Sci., 2018, vol. 79, p. 30. https://doi.org/10.1088/1361-6641/ab0723

    Article  CAS  Google Scholar 

  2. Acar, C., Dincer, I., and Naterer, G.F., Int. J. Energy Res., 2016, vol. 40, no. 11, p. 1449. https://doi.org/10.1002/er.3549

    Article  CAS  Google Scholar 

  3. Markovskaya, D.V., Kozlova, E.A., Stonkus, O.A., Saraev, A.A., Cherepanova, S.V., and Parmon, V.N., Int. J. Hydrogen Energy, 2017, vol. 42, no. 51, p. 30067. https://doi.org/10.1016/j.ijhydene.2017.10.104

    Article  CAS  Google Scholar 

  4. Pilemalm, R., Pourovskii, L., Mosyagin, I., Simak, S., and Eklund, P., Condens. Matter, 2019, vol. 4, p. P. 36. https://doi.org/10.3390/condmat4020036

  5. Zhurenok, A.V., Markovskaya, D.V., Potapenko, K.O., Sidorenko, N.D., Cherepanova, S.V., Saraev, A.A., Gerasimov, E.Yu., and Kozlova, E.A., Kinet. Catal., 2023, vol. 64, no. 3, p. 250. https://doi.org/10.1134/S0023158423030114

    Article  CAS  Google Scholar 

  6. Mathew, S., Bartlett, J., and Pillai, S.C., Appl. Catal. B: Environ., 2019, vol. 244, p. 1021. https://doi.org/10.1016/j.apcatb.2018.11.080

    Article  CAS  Google Scholar 

  7. Fajrina, N. and Tahir, M., Int. J. Hydrogen Energy, 2019, vol. 44, no. 2, pp. 540–577.

    Article  CAS  Google Scholar 

  8. Huang, J., Li, R., Li, D., Chen, P., Zhang, Q., Liu, H., Lv, W., Liu, G., and Feng, Y., J. Hazard. Mater., 2020, vol. 386, p. 121634.

    Article  CAS  PubMed  Google Scholar 

  9. Liang, Y., Li, W., Wang, X., Zhou, R., and Ding, H., Ceram. Int., 2022, vol. 48, no. 2, p. 2826. https://doi.org/10.1016/j.ceramint.2021.10.072

    Article  CAS  Google Scholar 

  10. Silva, B.A., Silva, J.C.G., Gonzalez, S.Y.G., Moreira, R.F.P., Peralta, R.A., Notza, D., and De Noni, A., Jr., Ceram. Int., 2022, vol. 48, no. 22, p. 32917. https://doi.org/10.1016/j.ceramint.2022.07.221

    Article  CAS  Google Scholar 

  11. Ullah, H., Tahir, A.A., Bibi, S., Mallick, T.K., and Karazhanov, S.Zh., Appl. Catal. B: Environ., 2018, vol. 229, p. 24. https://doi.org/10.1016/J.APCATB.2018.02.001

    Article  CAS  Google Scholar 

  12. Ma, Y., Yumeng, F., Wang, M., and Liang, X., J. Energy Chem., 2021, vol. 56, p. 353.

    Article  CAS  Google Scholar 

  13. Fang, C.M., Orhan, E., de Wijs, G.A., and Hintzen, H.T., J. Mater. Chem., 2001, no. 11, p. 1248. https://doi.org/10.1039/B005751G

  14. Orlov, V.M. and Sedneva, T.A., Perspekt. Mater., 2017, no. 1, p. 5.

  15. Li, D., Zeng, L., Li, B., Yang, X., Yu, Q., and Wu, Z., Mater. Des., 2020, vol. 187, p. 108416. https://doi.org/10.1016/j.matdes.2019.108416

    Article  CAS  Google Scholar 

  16. Skvortsova, L.N., Chukhlomina, L.N., Minakova, T.S., and Sherstoboeva, M.V., Russ. J. Appl. Chem., 2017, no. 90, p. 1246.

  17. Artiukh, I.A., Bolgaru, K.A., Dychko, K.A., Bavykina, A.V., Sastre, F., and Skvortsova, L.N., J. ChemistrySelect, 2021, no. 6, p. 10025.

  18. Bacardit, J., Stotzner, J., and Chamarro, E., Ind. Eng. Chem. Res., 2007, vol. 46, no. 23, p. 7615.

    Article  CAS  Google Scholar 

  19. Wadley, S. and Waite, T.D., Fenton Processes-Advanced Oxidation Processes for Water and Wastewater Treatment, London: IWA Publishing, 2004, pp. 111–135.

    Google Scholar 

  20. Jin, O., Lu, B., Tao, Y.P.X., Himmelhaver, C., Shen, Y., Gu, S., Zeng, Y., and Li, X.Y., Catal. Today, 2019, no. 3, p. 324. https://doi.org/10.1016/j.cattod.2019.12.006

  21. Junge, H., Boddien, A., Capitta, F., Loges, B., Noyes, J.R., Gladiali, S., and Beller, M., Tetrahedron Lett., 2009, vol. 50, no. 14, p. 1603.

    Article  CAS  Google Scholar 

  22. Fellay, C., Dyson, P.J., and Laurenczy, G.A., Angew. Chem. Int. Ed., 2008, vol. 47, no. 21, p. 3966.

    Article  CAS  Google Scholar 

  23. Klopotov, A.A., Abzaev, Yu.A., Potekaev, A.I., and Volokitin, O.G., Osnovy rentgenostrukturnogo analiza v materialovedenii (Fundamentals of X-Ray Diffraction Analysis in Materials Science), Tomsk: Izd. TGASU, 2012.

  24. Skvortsova, L.N., Kazantseva, K.I., Bolgaru, K.A., Artyukh, I.A., Reger, A.A., and Dychko, K.A., Neorg. Mater., 2023, no. 3, p. 333. https://doi.org/10.1134/S0020168523030123

  25. Gritsenko, V.A., Phys. Usp., 2012, vol. 55, no. 5, p. 498.

    Article  CAS  Google Scholar 

  26. Farias, J., Albizzatti, E.D., and Alfano, O.M., Catal. Today, 2009, vol. 144, p. 117.

    Article  CAS  Google Scholar 

  27. Tian, Y.C. and Fang, W.H., J. Phys. Chem. A, 2006, vol. 110, p. 11704.

    Article  CAS  PubMed  Google Scholar 

  28. Pozdnyakov, I.P., Glebov, E.M., Plyusnin, V.F., Grivin, V.P., Ivanov, Y.V., Vorobyev, D.Y., and Bazhin, N.M., Pure Appl. Chem., 2000, vol. 72, no. 11, p. 2187.

    Article  CAS  Google Scholar 

  29. Ohtani, B., Chem. Lett., 2008, vol. 37, p. 217.

    Article  CAS  Google Scholar 

  30. Ohtani, B., Phys. Chem., 2014, vol. 16, no. 5, p. 1788.

    CAS  Google Scholar 

  31. Kondarides, D.I., Daskalaki, V.M., Patsoura, A., and Verykios, X.E., Catal. Lett., 2008, vol. 122, p. 26.

    Article  CAS  Google Scholar 

  32. Kurenkova, A.Yu., Kozlova, E.A., and Kaichev, V.V., Kinet. Catal., 2021, vol. 62, no. 1, p. 62. https://doi.org/10.1134/S002315842006004X

    Article  CAS  Google Scholar 

  33. Puga, A.V., Coord. Chem. Rev., 2016, vol. 315, p. 1. https://doi.org/10.1016/j.ccr.2015.12.009

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state research target for Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences, project no. 121031800148-5). No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Skvortsova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations and notation: FSA, ferrosilicon aluminum; SEM, scanning electron microscopy; EPXMA, electron probe X-ray microanalysis; Eg, band gap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsova, L.N., Artyukh, I.A., Tatarinova, T.V. et al. Kinetic Mechanisms of the Photocatalytic Generation of Hydrogen from Formic Acid Using Metal–Ceramic Composites under Visible-Light Irradiation. Kinet Catal 65, 101–111 (2024). https://doi.org/10.1134/S0023158423601195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423601195

Keywords:

Navigation