Skip to main content
Log in

Quantum-Chemical Study of Formation of Alkyl- and Alkenyladamantanes by Ionic Alkylation with Olefins

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The thermodynamic parameters of formation reactions (total energy at 0 K, enthalpy, and Gibbs free energy at a temperature of 298.15 K and a pressure of 101 325 Pa) were estimated in the B3LYP-D3(BJ)/6-311++G** approximation for the products of ionic alkylation of adamantane and lower alkyladamantanes with ethylene and propylene. Aluminum chloride was used as an acid catalyst model. The quantum-chemical calculations demonstrated the effect of methyl groups in adamantanes and the molecular weight of the olefin on the energetics of formation of the corresponding alkyl- and alkenyladamantanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Ishizone, T. and Goseki, R., Polym. J., 2018, vol. 50, no. 9, p. 805. https://doi.org/10.1038/s41428-018-0081-3

  2. Harvey, B.G., Harrison, K.W., Davis, M.C., Chafin, A.P., Baca, J., and Merriman, W.W., Energy Fuels, 2016, vol. 30, no. 12, p. 10171. https://doi.org/10.1021/acs.energyfuels.6b01865

    Article  CAS  Google Scholar 

  3. Muthyala, R.S., Sheng, S., Carlson, K.E., Katzenellenbogen, B.S., and Katzenellenbogen, J.A., J. Med. Chem., 2003, vol. 46, no. 9, p. 1589. https://doi.org/10.1021/jm0204800

    Article  CAS  PubMed  Google Scholar 

  4. Min, J., Guillen, V.S., Sharma, A., Zhao, Y., Ziegler, Y., Gong, P., Mayne, C.G., Srinivasan, S., Kim, S.H., Carlson, K.E., Nettles, K.W., Katzenellenbogen, B.S., and Katzenellenbogen, J.A., J. Med. Chem., 2017, vol. 60, no. 14, p. 6321. https://doi.org/10.1021/acs.jmedchem.7b00585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robello, D.R., J. Appl. Polym. Sci., 2012, vol. 127, no. 1, p. 96. https://doi.org/10.1002/app.37802

    Article  CAS  Google Scholar 

  6. Yang, M., Zeng, Z., Lam, J.W.Y., Fan, J., Pu, K., and Tangetc, B.Z., Chem. Soc. Rev., 2022, vol. 51, no. 21, p. 8815. https://doi.org/10.1039/d2cs00228k

    Article  CAS  PubMed  Google Scholar 

  7. Li, X., Yin, C., Liew, S.S., Lee, C.-S., and Puetc, K., Adv. Funct. Mater., 2021, vol. 31, no. 46, p. 2106154. https://doi.org/10.1002/adfm.202106154

    Article  CAS  Google Scholar 

  8. Zhang, Y., Yan, C., Wang, C., Guo, Z., Liu, X., and Zhu, W.-H., Angew. Chem. Int. Ed., 2020, vol. 59, no. 23, p. 9059. https://doi.org/10.1002/anie.202000165

    Article  CAS  Google Scholar 

  9. Li, J., Hu, Y., Li, Z., Liu, W., Deng, T., and Li, J., Anal. Chem., 2021, vol. 93, no. 30, p. 10601. https://doi.org/10.1021/acs.analchem.1c01804

    Article  CAS  PubMed  Google Scholar 

  10. Shelef, O., Gutkin, S., Feder, D., Ben-Bassat, A., Mandelboim, M., Haitin, Y., Ben-Tal, N., Bacharach, Eran., and Shabat, D., Chem. Sci., 2022, vol. 13, no. 42, p. 12348. https://doi.org/10.1039/D2SC03460C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bagrii, E.I., Adamantany: poluchenie, svoistva, primenenie (Adamantane: Preparation, Properties, Application), Moscow: Nauka, 1989.

  12. Thomaston, J.L., Samways, M.L., Konstantinidi, A., Ma, C., Hu, Y., Macdonald, H.E.B., Wang, J., Essex, J.W., DeGrado, W.F., and Kolocouris, A., Biochemistry, 2021, vol. 60, no. 32, p. 2471. https://doi.org/10.1021/acs.biochem.1c00437

    Article  CAS  Google Scholar 

  13. Vu, B.D., Ba, N.M.H., Pham, V.H., and Phan, D.C., ACS Omega, 2020, vol. 5, no. 26, p. 16085. https://doi.org/10.1021/acsomega.0c01589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bräse, S., Waegell, B., and de Meijere, A., Synthesis, 1998, no. 2, p. 148. https://doi.org/10.1055/s-1998-2013

  15. Ikeda, Y., Nakamura, T., Yorimitsu, H., and Oshima, K., J. Am. Chem. Soc., 2002, vol. 124, no. 23, p. 6514. https://doi.org/10.1021/ja026296l

    Article  CAS  PubMed  Google Scholar 

  16. Fokin, A.A., Butova, E.D., Barabash, A.V., Huu, N.N., Tkachenko, B.A., Fokina, N.A., and Schreiner, P.R., Synth. Commun., 2013, vol. 43, no. 13, p. 1772. https://doi.org/10.1080/00397911.2012.667491

    Article  CAS  Google Scholar 

  17. Savel’eva, S.A., Leonova, M.V., Baimuratov, M.R., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2018, vol. 54, no. 7, p. 996. https://doi.org/10.1134/S1070428018070047

    Article  Google Scholar 

  18. Amaoka, Y., Nagatomo, M., Watanabe, M., Tao, K., Kamijo, S., and Inoue, M., Chem. Sci., 2014, vol. 5, no. 11, p. 4339.

  19. Cao, H., Kuang, Y., Shi, X., Wong, K.L., Tan, B.B., Kwan, J.M.C., Liu, X., and Wu, J., Nat. Commun., 2020, no. 11, p. 1956. https://doi.org/10.1038/s41467-020-15878-6

  20. Santiago, A.N., Basso, S.M., Toledo, C.A., and Rossi, R.A., New J. Chem., 2005, vol. 29, no. 7, p. 875. https://doi.org/10.1039/B418305C

    Article  CAS  Google Scholar 

  21. Zhao, J.-F., Wang, H., Wang, H.-B., Tian, Q.-Q., Zhang, Y.-Q., Feng, H.-T., and He, W., Org. Chem. Front., 2023, vol. 10, no. 2, p. 348. https://doi.org/10.1039/D2QO01614A

    Article  CAS  Google Scholar 

  22. Baimuratov, M.R., Leonova, M.V., Shiryaev, V.A., and Klimochkin, Y.N., Tetrahedron Lett., 2016, vol. 57, no. 48, p. 5317. https://doi.org/10.1016/j.tetlet.2016.10.059

    Article  CAS  Google Scholar 

  23. Islam, S.M. and Poirier, R.A., J. Phys. Chem. A, 2008, vol. 112, no. 1, p. 152. https://doi.org/10.1021/jp077306d

    Article  CAS  PubMed  Google Scholar 

  24. Sen, A., Mehta, G., and Ganguly, B., Tetrahedron, 2011, vol. 67, no. 20, p. 3754. https://doi.org/10.1016/j.tet.2011.02.022

    Article  CAS  Google Scholar 

  25. Kozuch, S., Zhang, X., Hrovat, D.A., Hrovat, D.A., and Borden, W.T., J. Am. Chem. Soc., 2013, vol. 135, no. 46, p. 17274. https://doi.org/10.1021/ja409176u

    Article  CAS  PubMed  Google Scholar 

  26. Bagrii, E.I., Borisov, Y.A., Kolbanovskii, Y.A., and Maksimov, A.L., Pet. Chem., 2019, vol. 59, p. 66. https://doi.org/10.1134/S0965544119010067

    Article  CAS  Google Scholar 

  27. Barca, G.M.J., Bertoni, C., Carrington, L., Datta, D., De Silva, N., Deustua, J.E., Fedorov, D.G., Gour, J.R., Gunina, A.O., Guidez, E., Harville, T., Irle, S., Ivanic, J., Kowalski, K., Leang, S.S., et al., L, J. Chem. Phys., 2020, vol. 152, no. 15, p. 154102. https://doi.org/10.1063/5.0005188

    Article  CAS  PubMed  Google Scholar 

  28. Candian, A., Bouwman, J., Hemberger, P., Bodi, A., and Tielensa, A.G.G.M., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 8, p. 5399. https://doi.org/10.1039/C7CP05957D

  29. Wu, J.I., van Eikema, HommesN.J.R., Lenoir, D., and Bachrach, S.M., J. Phys. Org. Chem., 2019, vol. 32, no. 9. https://doi.org/10.1002/poc.3965

  30. Bachrach, S.M., J. Phys. Org. Chem., 2018, vol. 31, no. 7, p. e3840. https://doi.org/10.1002/poc.3840

  31. Zhuk, T.S., Koso, T., Pashenko, A.E., Hoc, N.T., Rodionov, V.N., Serafin, M., Schreiner, P.R., and Fokin, A.A., J. Am. Chem. Soc., 2015, vol. 137, no. 20, p. 6577. https://doi.org/10.1021/jacs.5b01555

    Article  CAS  PubMed  Google Scholar 

  32. Chemcraft, a graphical program for visualizing quantum chemical calculations. https://www.chemcraftprog.com. Accessed September 7, 2023.

  33. Olah, G.A., Prakash, G.K.S., Shih, J.G., Krishnamurthy, V.V., Mateescu, G.D., Liang, G., Sipos, G., Buss, V., Gund, T.M., and Schleyer Paul, R., J. Am. Chem. Soc., 1985, vol. 107, no. 9, p. 2764. https://doi.org/10.1021/ja00295a032.1

    Article  CAS  Google Scholar 

  34. Baranov, N.I., Safir, R.E., Bagrii, E.I., Bozhenko, K.V., and Cherednichenko, A.G., Pet. Chem., 2020, vol. 60, p. 1033. https://doi.org/10.1134/S0965544120090042

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding of Patrice Lumumba Peoples’ Friendship University of Russia and Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Baranov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations and designations: TS is the transition state; PES, potential energy surface; ΔE0, the difference in the total energies of the systems at absolute zero; ΔH298, enthalpy at a temperature of 298.15 K; ΔG298, Gibbs free energy at 298.15 K; \(\Delta G_{{298}}^{ \ne }\), Gibbs energy of activation at 298.15 K.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, N.I., Bagrii, E.I., Safir, R.E. et al. Quantum-Chemical Study of Formation of Alkyl- and Alkenyladamantanes by Ionic Alkylation with Olefins. Kinet Catal 65, 93–100 (2024). https://doi.org/10.1134/S0023158423601171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423601171

Keywords:

Navigation