Skip to main content
Log in

Degradation of Methyl Red Azo Dye by Hexacyanoferrate(III) Ions from Water using Ultrafine Ir–Cu Bimetallic Nanoparticles: a Kinetic Approach

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the kinetics of catalytic degradation of methyl red, an anionic azo dye, by hexacyanoferrate(III) ions in the presence of ultrafine Ir–Cu bimetallic nanoparticles has been investigated. The effect of various parameters, including the concentration of dye, oxidant, Ir–Cu bimetallic nanoparticles (BMNPs), and solution pH on the reaction rate was investigated by measuring the light absorption at a wavelength of 425 nm, corresponding to the maximum absorption of the dye. The results reveal that the reaction follows first-order kinetics with respect to the concentration of hexacyanoferrate(III), methyl red, and Ir–Cu BMNPs at an optimum pH of 8.0 and a constant temperature of 40 ± 0.1°C. In order to determine how electrolytes interact with the reaction rate, the impact of ionic strength on the degradation rate was also examined. The high catalytic activity of Ir–Cu BMNPs was demonstrated by a three to four-fold rise in the reaction rate with increasing concentration of Ir–Cu BMNPs (particle size ca. 0.98nm). Thermodynamic parameters including activation energy (Ea), enthalpy of activation (ΔH#), entropy of activation (ΔS#), and free energy of formation (ΔF#) of the reaction were calculated by analyzing the reaction rate at four different temperatures within the 40 to 55°C range. The low value of activation energy also suggests a high degradation rate. A reaction mechanism through complex formation was proposed based on the experimental findings which were supported by the analysis of the products formed. The formation of simpler and less hazardous products (1,5-pentanediol and benzoic acid) was verified by UV–Vis spectroscopy and liquid chromatography and mass spectroscopy (LC–MS). The assessment of turnover frequencies for each catalytic cycle also proved the stability and reusability of the catalyst. As a result, the discovery offers an innovative and highly cost-effective solution for environmental safety against dye contamination, with the potential for expansion to additional toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A.A., Amin, M.O., and Madkour, M., Sci. Rep., 2018, vol. 8, no. 1, p. 1.

    Article  Google Scholar 

  2. Gautam, A., Kshirsagar, A., Biswas, R., Banerjee, S., and Khanna, P.K., RSC Adv., 2016, vol. 6, no. 4, p. 2746.

    Article  CAS  Google Scholar 

  3. Dawood, S. and Sen, T., J. Chem. Proc. Eng., 2014, vol. 1, no. 104, p. 1.

    Google Scholar 

  4. Reza, K.M., Kurny, A.S.W., and Gulshan, F., Appl. Water Sci., 2017, vol. 7, no. 4, p. 1569.

    Article  CAS  Google Scholar 

  5. Gähr, F., Hermanutz, F., and Oppermann, W., Water Sci. Technol., 1994, vol. 30, no. 3, p. 255.

    Article  Google Scholar 

  6. Neamtu, M., Yediler, A., Siminiceanu, I., and Kettrup, A., J. Photochem. Photobiol. A: Chem., 2003, vol. 16, no. 1, p. 87.

    Article  Google Scholar 

  7. Pelegrini, R., Peralta-Zamora, P., Andrade, A.R., Reyes, J., and Duran, N., Appl. Catal. B:Environ., 1999, vol. 22, p. 83.

    Article  CAS  Google Scholar 

  8. Kariyajjanavar, P., Narayana, J., and Nayaka, Y.A., J. Environ. Chem. Eng., 2013, vol. 1, no. 4, p. 975.

    Article  CAS  Google Scholar 

  9. Wawrzkiewicz, M., Solv. Extr. Ion Exch., 2012, vol. 30, no. 5, p. 507.

    Article  CAS  Google Scholar 

  10. Sangjan, S., Sratongin, M., Kawpakpor, A., Ampha, P., Jamtanom, L., and Kaewbang, K., Int. Mater. Sci. Forum, 2016, vol. 860, p. 105.

  11. Qi, W., Jincai, Z., Yanqing, C., and Yi, Z., Chin. J. Catal., 2011, vol. 32, no. 6, p. 1076.

    Google Scholar 

  12. Mishra, A., Newkome, G.R., Moorefield, C.N., and Godínez, L.A., Dyes Pigm., 2003, vol. 58, no. 3, p. 227.

    Article  CAS  Google Scholar 

  13. Giwa, A.R.A., Bello, I.A., Olabintan, A.B., Bello, O.S., and Saleh, T.A., Heliyon, 2020, vol. 6, no. 8, p. 04454.

    Article  Google Scholar 

  14. Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., and Pattabhi, S., Bioresour. Technol., 2003, vol. 87, no. 1, p. 129.

    Article  CAS  PubMed  Google Scholar 

  15. Benkhaya, S., M’rabet, S., and El Harfi, A., Heliyon, 2020, vol. 6, p. 03271.

    Article  Google Scholar 

  16. Lasyal, R. and Rajput, S., J. Water Environ. Nanotechnol., 2023, vol. 8, no. 2, p. 108.

    CAS  Google Scholar 

  17. Goel, A., Kinet. Catal., 2021, no. 2, p. 592.

  18. Goel, A. and Pooja, Int. J. Nanoparticles, 2021, vol. 13, no. 1, p. 1.

    Article  CAS  Google Scholar 

  19. Hassan, M.M. and Carr, C.M., Chemosphere, 2018, vol. 209, p. 201.

    Article  CAS  PubMed  Google Scholar 

  20. Wojnarovits, L. and Takacs, E., Radiat. Phys. Chem., 2008, vol. 77, no. 3, p. 225.

    Article  CAS  Google Scholar 

  21. Gutierrez, M.C. and Crespi, M., Color. Technol., 1999, vol. 115, no. 11, p. 342.

    Article  CAS  Google Scholar 

  22. Islam, M.N., Abbas, M., and Kim, C., Curr. Appl. Phys., 2013, vol. 13, no. 9, p. 2010.

    Article  Google Scholar 

  23. Goel, A. and Rani, N., Open J. Inorg. Chem., 2012, vol. 2, no. 3, p. 67.

    Article  Google Scholar 

  24. Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., and Rahuman, A.A., Mater. Lett., 2012, vol. 71, p. 114.

    Article  CAS  Google Scholar 

  25. Vinoda, B.M., Vinuth, M., Bodke, Y.D., and Manjanna, J., J. Environ. Anal. Toxicol., 2015, vol. 5, no. 336, p. 2161.

    Google Scholar 

  26. Goel, A. and Lasyal, R., Water Sci., Technol., 2016, vol. 74, p. 2551.

    Article  CAS  PubMed  Google Scholar 

  27. Goel, A. and Chaudhary, M., Bull. Mater. Sci., 2018, vol. 41, no. 3, p. 81.

    Article  Google Scholar 

  28. Goel, A., Bhatt, R., and Lasyal, R., Int. J. Chem. Sci., 2014, vol. 12, no. 4, p. 1527.

    CAS  Google Scholar 

  29. Goel, A. and Lasyal, R., Desalin. Water Treat., 2016, vol. 57, no. 37, p. 17547.

    Article  CAS  Google Scholar 

  30. Aragaw, T.A. and Angerasa, F.T., Heliyon, 2020, vol. 6, no. 9, p. 04975.

    Article  Google Scholar 

  31. Nagar, N. and Devra, V., Heliyon, 2019, vol. 5, no. 3, p. 01356.

    Article  Google Scholar 

  32. Singh, H.P., Gupta, N., Sharma, S.K., and Sharma, R.K., Colloids Surf. A: Physicochem. Eng., 2013, vol. 416, p. 43.

    Article  Google Scholar 

  33. Alardhi, S.M., Albayati, T.M., and Alrubaye, J.M., Heliyon, 2020, vol. 6, no. 1, p. 03253.

    Article  Google Scholar 

  34. Giwa, A.R.A., Bello, I.A., Olabintan, A.B., Bello, O.S., and Saleh, T.A., Heliyon, 2020, vol. 6, no. 8, p. 04454.

    Article  Google Scholar 

  35. Aragaw, T.A. and Angerasa, F.T., Heliyon, 2020, vol. 6, no. 9, p. 04975.

    Article  Google Scholar 

  36. Barathi, S., Karthik, C., Nadanasabapathi, S., and Padikasan, I.A., Toxicol. Rep., 2020, vol. 7, p. 16.

    Article  CAS  PubMed  Google Scholar 

  37. Rauf, M.A., Meetani, M.A., Khaleel, A., and Ahmed, A., Chem. Eng. Trans., 2010, vol. 157, nos. 2–3, p. 373.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge to Gurukul Kangri University for providing the basic facilities for this research work. The authors are also thankful to the Director of the Department of Institutional Instrumentation Centre (IIC), IIT Roorkee for providing all required Techniques for the analysis of this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pooja, Anjali Goel or Rajni Lasyal.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: Ir–Cu BMNPs—Ir–Cu bimetallic nanoparticles; MR—methyl red; HCF(III)—hexacyanoferrate(III); PVP—polyvinylpyrrolidone; EG—ethylene glycol; EA—ethyl acetate; OC—organic compounds; LC–MS—liquid chromatography and mass spectroscopy; Ea– activation energy; ΔH#—enthalpy of activation; ΔS#—entropy of activation; ΔF#—free energy of formation; TEM—transmission electron microscopy; SEM—scanning electron microscopy; EDX—energy-dispersive X-ray spectroscopy; TLC—thin layer chromatography; TOF—turnover frequency; (da/dt)—degradation rate of MR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pooja, Goel, A. & Lasyal, R. Degradation of Methyl Red Azo Dye by Hexacyanoferrate(III) Ions from Water using Ultrafine Ir–Cu Bimetallic Nanoparticles: a Kinetic Approach. Kinet Catal 65, 122–132 (2024). https://doi.org/10.1134/S0023158423600657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423600657

Keywords:

Navigation