Skip to main content
Log in

Using SAXS for Determining the Sizes of Gold Nanoparticles in Au/C Catalysts: Advantages over Other Methods

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The advantages of using SAXS along with the masking liquid technique for determining the sizes of supported metal particles over the standard TEM and XRD methods, usually used for these purposes, were shown in the case of Au/C catalysts. Particle size distributions of gold in a wide range (1–50 nm) were obtained from the SAXS data, including for all size fractions present in the samples. The mass fractions of X-ray amorphous gold particles smaller than 4 nm (WSAXS) were determined. The oxidative treatment of the carbon support before the deposition of the metallic gold precursor complexes has a significant effect on the size distribution of gold particles in the final catalyst. A comparison of the experimental rates of CO oxidation with an excess of moist air at 40°C on Au/C catalysts with the WSAXS values found for these catalysts showed that the catalytic activity increased exponentially as WSAXS increased. The Au/C catalysts with WSAXS ≥ 80% showed high activity in the oxidation of CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Haruta, M., Catal. Today, 1997, vol. 36, p. 153.

    Article  CAS  Google Scholar 

  2. Bond, G.C., Louis, C., and Thompson, D.T., Catalysis By Gold, London: Imperial College Press, 2006

    Book  Google Scholar 

  3. Kustov, L.M., Izv. Akad. Nauk. Ser. Khim., 2013, no. 4, p. 870.

  4. Heterogeneous Gold Catalysts and Catalysis, Ma, Z. and Dai, S., Eds., Cambridge, UK: Royal Society of Chemistry, 2014.

    Google Scholar 

  5. Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J., and Delmon, B., J. Catal., 1993, vol. 144, p. 175.

    Article  CAS  Google Scholar 

  6. Zanella, R., Giorgio, S., Shin, C.-H., Henry, C.R., and Louis, C., J. Catal., 2004, vol. 222, p. 357.

    Article  CAS  Google Scholar 

  7. Chen, M.S. and Goodman, D.W., Catal. Today, 2006, vol. 111, p. 22.

    Article  CAS  Google Scholar 

  8. Kung, M.C., Davis, R.J., and Kung, H.H., J. Phys. Chem. C, 2007, vol. 111, p. 11767.

    Article  CAS  Google Scholar 

  9. Hvolbaek, B., Janassens, T.V.W., Clausen, B.S., Falsig, H., Christensen, C.H., and Norskov, J.K., Nanotoday, 2007, vol. 2, p. 14.

    Article  Google Scholar 

  10. Mohr, C., Hofmeister, H., and Claus, P., J. Catal., 2003, vol. 213, p. 86.

    Article  CAS  Google Scholar 

  11. Hartfelder, U., Kartusch, C., Makosch, M., Rovezzi, M., Sa, J., and van Bokhoven, J.A., Catal. Sci. Technol., 2013, vol. 3, p. 454.

    Article  CAS  Google Scholar 

  12. Smirnov, V.V., Nikolaev, S.A., Murav’eva, G.P., Tyurina, L.A., and Vasil’kov, A.Yu., Kinet. Katal., 2007, vol. 48, p. 1.

    Article  Google Scholar 

  13. Della Pina, C., Falletta, E., Rossi, M., and Sacco, A., J. Catal., 2009, vol. 263, p. 92.

    Article  CAS  Google Scholar 

  14. Delidovich, I.V., Moroz, B.L., Taran, O.P., Gromov, N.V., Pyrjaev, P.A., Prosvirin, I.P., Bukhtiyarov, V.I., and Parmon, V.N., Chem. Eng. J., 2013, vol. 223, p. 921.

    Article  CAS  Google Scholar 

  15. Bianchi, C., Porta, F., Prati, L., and Rossi, M., Top. Catal., 2000, vol. 13, p. 231.

    Article  CAS  Google Scholar 

  16. Li, R., Yan, X., Zhu, X., Shou, D., Zhou, X., Dai, Y., and Yang, Y., Catal. Today, 2017, vol. 298, p. 269.

    Article  CAS  Google Scholar 

  17. Qi, C., Akita, T., Okumura, M., and Haruta, M., Appl. Catal. A: Gen., 2004, vol. 263, p. 19.

    Article  CAS  Google Scholar 

  18. Dimitratos, N., Lopes-Sancez, J.A., Lennon, D., Porta, F., Prati, L., and Villa, A., Catal. Lett., 2006, vol. 108, p. 147.

    Article  CAS  Google Scholar 

  19. Ona, J.P., Latonen, R.-M., Kumar, N., Peurla, M., Angervo, I., and Grenman, H., Electrochim. Acta, 2022, vol. 426, no. 140754.

  20. Bond, G.C., Molecules, 2012, vol. 17, p. 1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moroz, B.L., Pyrjaev, P.A., Zaikovskii, V.I., and Bukhtiyarov, V.I., Catal. Today, 2009, vol. 144, p. 292.

    Article  CAS  Google Scholar 

  22. Riello, P., Canton, P., and Benedetti, A., Langmuir, 1998, vol. 14, p. 6617.

    Article  CAS  Google Scholar 

  23. Pyryaev, P.A., Moroz, B.L., Zyuzin, D.A., Gerasimov, E.A., Nartova, A.V., and Bukhtiyarov V.I., Kinet. Catal., 2010, vol. 51, p. 885.

    Article  CAS  Google Scholar 

  24. Bulushev, D.A., Kiwi Minsker, L., Yuranov, I., Suvorova, E.I., Buffat, P.A., and Renken, A., J. Catal., 2002, vol. 210, p. 149.

    Article  CAS  Google Scholar 

  25. Della Pina, C., Falletta, E., and Rossi, M., Chem. Soc. Rev., 2012, vol. 41, p. 350.

    Article  CAS  PubMed  Google Scholar 

  26. Villa, A., Dimitratos, N., Chan-Thaw, C.E., Hammond, C., Prati, L., and Hutchings, G.H., Acc. Chem. Res., 2015, vol. 48, p. 1403.

    Article  CAS  PubMed  Google Scholar 

  27. Donoeva, B., Masoud, N., and de Jongh, P.E., ACS Catal., 2017, vol. 7, p. 4581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pyrjaev, P.A., Yuschenko, D.Y., Moroz, B.L., Pai, Z.P., and Bukhtiyarov, V.I., ChemistrySelect, 2019, vol. 4, p. 10576.

    Article  Google Scholar 

  29. Ruvinsky, P.S., Pronkin, S.N., Zaikovskii, V.I., Bernhardt, P., and Savinova, E.R., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6665.

    Article  CAS  PubMed  Google Scholar 

  30. Simonov, A.N., Pyrjaev, P.A., Moroz, B.L., Bukhtiyarov, V.I., and Parmon, V.N., Electrocatalys, vol. 3, no. 2012, p. 119.

  31. Prati, L. and Martra, G., Gold Bull, 1999, vol. 32, p. 96.

    Article  CAS  Google Scholar 

  32. Feigin, L.A. and Svergun, D.I., Structure Analysis by Small-AngleX-Ray and Neutron Scattering, New York: Plenum Press, 1987.

    Book  Google Scholar 

  33. Sharma, P., Darabdhara, G., Reddy, T.M., Borah, A., Bezboruah, P., Gogoi, P., Hussain, N., Sengupta, P., and Das, M.R., Catal. Commun., 2013, vol. 40, p. 139.

    Article  CAS  Google Scholar 

  34. Padayachee, D., Golovko, V., Ingham, B., and Marshall, A.T., Electrochim. Acta, 2014, vol. 120, p. 398.

    Article  CAS  Google Scholar 

  35. Pavelko, N.V., Dodonov, V.G., Pugachev, V.M., Puzynin, A.V., and Manina, T.S., Barnakov, Ch.N., Ismagilov Z.R., Catal. Today, 2015, vol. 249, p. 220.

    Article  Google Scholar 

  36. Benedetti, A., Polizzi, S., Riello, P., Pinna, F., and Goerigk, G., J. Catal., 1998, vol. 171, p. 345.

    Article  Google Scholar 

  37. Benedetti, A., Bertoldo, L., Canton, P., Goerigk, G., Pinna, F., Riello, P., and Polizzi, S., Catal. Today, 1999, vol. 49, p. 485.

    Article  CAS  Google Scholar 

  38. Gann, E.L., J. Phys. Chem., 1958, vol. 62, p. 928.

    Article  Google Scholar 

  39. Whyte, T.E., Kirklin, P.W., Gould, R.W., and Heinemann, H., J. Catal., 1972, vol. 25, p. 407.

    Article  CAS  Google Scholar 

  40. Larichev, Yu.V. and Tuzikov, F.V., J. Appl. Crystallogr., 2013, vol. 46, p. 752.

    Article  CAS  Google Scholar 

  41. Salnikova, K.E., Matveeva, V.G., Larichev, Yu.V., Bykov, A.V., Demidenko, G.N., Shkileva, I.P., and Sulman, M.G., Catal. Today, 2019, vol. 329, p. 142.

    Article  CAS  Google Scholar 

  42. Salnikova, K.E., Larichev, Yu.V., Sulman, E.M., Bykov, A.V., Sidorov, A.I., Demidenko, G.N., Sulman, M.G., Bronstein, L.M., and Matveeva, V.G., ChemPlusChem, 2020, vol. 85, p. 1697.

    Article  CAS  PubMed  Google Scholar 

  43. Taratayko, A., Larichev, Yu., Zaikovskii, V., Mikheeva, N., and Mamontov, G., Catal. Today, 2021, vol. 375, p. 576.

    Article  CAS  Google Scholar 

  44. Mason, W.R. and Grey, H.B., J. Am. Chem. Soc., 1968, vol. 90, p. 5721.

    Article  CAS  Google Scholar 

  45. Skibsted, L.H. and Bjerrum, J., Acta Chem. Scand., 1974, vol. A28, p. 740.

    Article  Google Scholar 

  46. Plaksin, G.V., Baklanova, O.N., Lavrenov, A.V., and Likholobov, V.A., Solid Fuel Chem., 2014, vol. 48, p. 349.

    Article  CAS  Google Scholar 

  47. Simonov, P.A., Pd/C catalysts: Study of physicochemical processes of formation of the active component from H2PdCl4, Cand. Sci. (Chem.) Dissertation, Novosibirsk: Inst. Kataliza SO RAN, 2000.

  48. Aguilar, C., Garcia, R., Soto-Garrido, G., and Arriagada, R., Appl. Catal. B: Environ., 2003, vol. 46, p. 229.

    Article  CAS  Google Scholar 

  49. Karnaukhov, A.P., Fenelonov, V.B., and Gavrilov, V.Yu., Pure Appl. Chem., 1989, vol. 61, p. 1913.

    Article  CAS  Google Scholar 

  50. Konarev, P.V., Petoukhov, M.V., Volkov, V.V., and Svergun, D.I., J. Appl. Crystallogr., 2006, vol. 39, p. 277.

    Article  CAS  Google Scholar 

  51. Poluyanov, S.A., Tuzikov, F.V., Larichev, Yu.V., and Tsybulya, S.V., Zh. Strukt. Khim., 2016, vol. 57, p. 809.

    Google Scholar 

  52. Simonov, A.N., Pyrjaev, P.A., Simonov, P.A., Moroz, B.L., Cherepanova, S.V., Zyuzin, D.A., Bukhtiyarov, V.I., and Parmon, V.N., J. Mol. Catal. A: Chem., 2012, vols. 353–354, p. 204.

    Article  Google Scholar 

  53. Simonov, P.A., Romanenko, A.V., Prosvirin, I.P., Kryukova, G.N., Chuvilin, A.L., Bogdanov, S.V., Moroz, E.M., and Likholobov, V.A., Stud. Surf. Sci. Catal., 1998, vol. 118, p. 15.

    Article  CAS  Google Scholar 

  54. Bulushev, D.A., Yuranov, I., Suvorova, E.I., Buffat, P.A., Kiwi Minsker, L., J. Catal., 2004, vol. 224, p. 8.

    Article  CAS  Google Scholar 

  55. Anderson, J., Structure of Metallic Catalysts, Cambridge, MA: Academic Press, 1975.

    Google Scholar 

  56. Bukhtiyarov, V.I., Moroz, B.L., Bekk, I.E., and Prosvirin, I.P., Kataliz v promyshlennosti. Spetsvypusk: Nanotekhnologii v katalize—perspektiva proryvnykh innovatsii XXI veka, 2008, p. 44.

  57. Auer, P.A., Freund, A., Pietsch, J., and Tacke, T., Appl. Catal. A: Gen., 1998, vol. 173, p. 259.

    Article  CAS  Google Scholar 

  58. Tarasenko, Yu.A., Boldyreva, N.A., Gerasimyuk, I.P., Lapko, V.F., Yatsimirskii, V.K., Katal. Neftekhim., 2003, no. 3, p. 51.

Download references

ACKNOWLEDGMENTS

We are grateful to E.Yu. Gerasimov, D.A. Zyuzin, and M.S. Mel’gunov for help with performing this research. The SAXS measurements were performed using the equipment provided by the High Technologies and Analysis of Nanosystems (VTAN) Multiaccess Center of Novosibirsk State University.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project FSUS-2020-0029) and was performed under the government contract at the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011390053-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Larichev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and designations: SAXS, small-angle X-ray scattering; TEM, transmission electron microscopy; XRD, X-ray diffraction analysis; SCA, specific catalytic activity; CSR, coherent scattering region; PSD, metal particle size distribution; CS, carbon support; XRF, X-ray fluorescence analysis; SBET, specific surface area; VΣ, total volume of pores with sizes of 0.35–100 nm; BET, Brunauer–Emmett–Teller method; Dp, average pore diameter; Vμ, volume of micropores; D111, average size of the CSR of gold; IRM, initial reaction mixture; FRM, final reaction mixture; ХСО, CO conversion; A, catalytic activity; U, space velocity of IRM fed in the reactor; MAu, molar mass of gold; mAu, mass of gold in the catalyst sample; Vm, molar volume of the ideal gas; dl, dm, and dvs, the number-average, mass-average, and volume-surface diameters; DN(d) and DV(d), numerical and volume particle size distributions; WXRD and WSAXS, fractions of fine particles according to XRD and SAXS data; DSAXS, average particle size determined from the volumetric distribution according to the SAXS data; CA, cationic adsorption; and AA, anionic adsorption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larichev, Y.V., Moroz, B.L., Pyrjaev, P.A. et al. Using SAXS for Determining the Sizes of Gold Nanoparticles in Au/C Catalysts: Advantages over Other Methods. Kinet Catal 64, 882–894 (2023). https://doi.org/10.1134/S0023158423060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060083

Keywords:

Navigation