Skip to main content
Log in

Synthesis of Low Molecular Weight Butadiene Polymers Using Cationic Catalytic Systems Based on Diethylaluminum Chloride

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The cationic polymerization of butadiene under the action of catalytic systems based on diethylaluminum chloride (AlEt2Cl) in combination with tertiary alkyl halides (AHs) such as tert-butyl chloride, tert-butyl bromide, and 2-chloro-2-methylbutane is found to be an efficient method for the preparation of fully soluble butadiene polymers at a technologically convenient process temperature of 20°C. It is shown that with an increase in the duration of butadiene polymerization process, the weight-average molecular weights and polydispersity of the polymer increase significantly with a simultaneous decrease in the unsaturation of polybutadiene, which is associated with the transfer reaction of the growing chain to the double bond of the polymer during polymerization. A 13C NMR spectral study showed that the macromolecules of polybutadiene synthesized on the AlEt2Cl–tert-butyl chloride catalytic system consist mainly of 1,4-trans units and contain two types of initial tert-butyl units and two types of end chlorine-containing units formed as a result of the transfer reaction of the growing chain to tert-butyl chloride. Based on the data of 13C NMR spectra of polybutadiene, a method for calculating butadiene conversion during polymerization is developed, and a mechanism of the process of cationic polymerization of butadiene is proposed. It is shown that the synthesized “cationic” polybutadiene is characterized by high film-forming properties and can be a promising component in the production of paints and varnishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Mark, J.E., Erman, B., and Eirich, F.R., Science and Technology of Rubber, Amsterdam: Elsevier, 2005, p. 762.

    Google Scholar 

  2. Holden, G., Kricheldorf, H.R., and Quirk, R.P., Thermoplastic Elastomers, Munich: Hanser Publisher, 2004, p. 718.

    Google Scholar 

  3. Monakov, Yu.B. and Tolstikov, G.A., Kataliticheskaya polimerizatsiya 1,3-dienov (Catalytic Polymerization of 1,3-Dienes), Moscow: Nauka, 1990.

  4. Mogilevich, M.M., Turov, B.S., Morozov, Yu.L., and Ustavshchikov, B.F., Zhidkie uglevodorodnye kauchuki (Liquid Hydrocarbon Rubbers), Moscow: Khimiya, 1983.

  5. Dolgoplosk, B.A. and Tinyakova, E.I., Metalloorganicheskii kataliz v protsessakh polimerizatsii (Metal-Organic Catalysis in Polymerization Processes), Moscow: Nauka, 1985.

  6. Rozentsvet, V.A., Kozlov, V.G., and Monakov, Yu.B., Kationnaya polimerizatsiya sopryazhennykh dienov (Cationic Polymerization of Conjugated Dienes), Moscow: Nauka, 2011.

  7. Marvel, C.S., Gilkey, R., Morgan, C.R., Noth, J.F., Rands, R.D., and Young, C.H., J. Polym. Sci., 1951, vol. 6, p. 483.

    Article  CAS  Google Scholar 

  8. Ferington, T.E. and Tobolsky, A.V., J. Polym. Sci., 1958, vol. 31, p. 25.

    Article  CAS  Google Scholar 

  9. Kita, R. and Kimi, A., J. Coat. Technol., 1976, vol. 48, p. 53.

    CAS  Google Scholar 

  10. Gaylord, N.G., Kossler, I., and Stolka, M., J. Macromol. Sci. Chem., 1968, vol. 2, p. 1105.

    Article  CAS  Google Scholar 

  11. Gaylord, N.G., Pure Appl. Chem., 1970, vol. 23, p. 305.

    Article  CAS  Google Scholar 

  12. Rozentsvet, V.A., Kozlov, V.G., Sablina, N.A., and Stotskaya, O.A., Russ. Chem. Bull., 2018, no. 8, p. 1419.

  13. Rozentsvet, V.A., Ulyanova, D.M., Sablina, N.A., Kostjuk, S.V., Tolstoy, P.M., and Novakov, I.A., Polym. Chem., 2022, vol. 13, p. 1596.

    Article  CAS  Google Scholar 

  14. Rozentsvet, V.A., Stotskaya, O.A., Ivanova, V.P., Kuznetsova, M.G., Tolstoy, P.M., and Kostjuk, S.V., J. Polym. Sci.: Polym. Chem., 2018, vol. 56, p. 387.

    Article  CAS  Google Scholar 

  15. Rozentsvet, V.A., Sablina, N.A., Ulyanova, D.M., Tolstoy, P.M., Smirnov, S.N., and Novakov, I.A., Dokl. Phys. Chem., 2020, vol. 491, p. 55.

    Article  Google Scholar 

  16. Tinyakova, E.I., Zhuravleva, T.G., Kuren’gina, T.N., Kirikova, N.S., and Dolgoplosk, B.A., Dokl. Akad. Nauk SSSR, 1962, vol. 144, p. 592.

    CAS  Google Scholar 

  17. Rozentsvet, V.A., Kozlov, V.G., Korovina, N.A., and Novakov, I.A., Kinet. Catal., 2015, vol. 56, p. 132.

    Article  CAS  Google Scholar 

  18. Rozentsvet, V.A., Kozlov, V.G., Stotskaya, O.A., Smirnov, S.N., and Tolstoi, P.M., Russ. Chem. Bull., 2019, no. 1, p. 116.

  19. Rozentsvet, V.A., Kozlov, V.G., Stotskaya, O.A., Sablina, N.A., Peruch, F., and Kostjuk, S.V., Eur. Polym. J., 2018, vol. 103, p. 11.

    Article  Google Scholar 

  20. Rozentsvet, V.A., Kozlov, V.G., Sablina, N.A., Stotskaya, O.A., Peruch, F., and Kostjuk, S.V., Polym. Chem., 2017, vol. 8, p. 926.

    Article  CAS  Google Scholar 

  21. Rozentsvet, V.A., Kozlov, V.G., Korovina, N.A., and Kostjuk, S.V., Macromol. Chem. Phys., 2013, vol. 214, p. 2694.

    Article  CAS  Google Scholar 

  22. Rozentsvet, V.A., Sablina, N.A., Ulyanova, D.M., Tolstoy, P.M., and Novakov, I.A., Dokl. Phys. Chem., 2021, vol. 499, p. 66.

    Article  Google Scholar 

  23. Rozentsvet, V.A., Ulyanova, D.M., Sablina, N.A., Kuznetsova, M.G., and Tolstoy, P.M., Russ. Chem. Bull., 2022, no. 4, p. 787.

  24. Priola, A., Cesca, S., and Ferraris, G., Makromol. Chem., 1972, vol. 160, p. 41.

    Article  CAS  Google Scholar 

  25. Kennedy, J.P. Cationic Polymerization of Olefins: A Critical Inventory, New York: Wiley, 1975.

    Google Scholar 

  26. Tanaka, Y., Sato, H., and Gonzalez, I.G., J. Polym. Sci.: Polym. Chem., 1979, vol. 17, p. 3027.

    CAS  Google Scholar 

Download references

Funding

This work was carried out on the theme of research No. 1021060107217-0-1.6.19 of the Samara Federal Research Scientific Center, Russian Academy of Sciences, Institute of Ecology of Volga River Basin, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Rozentsvet.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This paper does not contain any descriptions involving humans or the use of animals as objects.

Additional information

Abbreviations and notation: AlEt2Cl is diethylaluminum chloride; AH, alkyl halide; TBC, tBuCl, tert-butyl chloride; TBB, tert-butyl bromide; CMB, 2-chloro-2-methylbutane; IF, insoluble fraction; Mn, number-average molecular weight; Mw, weight-average molecular weight; Mw/Mn, polydispersity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentsvet, V.A., Ulyanova, D.M., Sablina, N.A. et al. Synthesis of Low Molecular Weight Butadiene Polymers Using Cationic Catalytic Systems Based on Diethylaluminum Chloride. Kinet Catal 64, 55–66 (2023). https://doi.org/10.1134/S0023158423010068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423010068

Keywords:

Navigation