Skip to main content
Log in

Supramolecular Catalysts for the Radical Destruction of Hydroperoxides Based on Choline Derivatives

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effect of natural quaternary ammonium compounds (QAC) of choline (Ch) and its derivatives, acetylcholine (AСh) and L-carnitine (LCh), containing the tetraalkylammonium cation (CH3)3RN+, on the radical decomposition of hydroperoxides (ROOH) was studied. In mixtures of ACh and Ch with ROOH in chlorobenzene, mixed nanoaggregates are formed, and accelerated decomposition of ROOH into radicals occurs; the rates of radical formation measured by the inhibitor method decrease in the series ACh > Ch \( \gg \) LCh. ACh and Ch immobilized on microcrystalline cellulose retain the ability to catalyze the radical decomposition of ROOH and initiate the polymerization of styrene containing ROOH from the surface. LСh adsorbed on cellulose does not affect the decomposition of ROOH and the rate of polymerization. Scanning electron microscopy (SEM) showed that ACh and Ch adsorbed on a silicon plate accelerate the radical decomposition of ROOH and initiate oxidative condensation of egg phosphatidylcholine on the surface of the plate, while adsorbed LCh does not affect the decomposition of ROOH. LCh, unlike ACh and Ch, is an internal salt in which the R4N+ cation is neutralized by its own carboxy anion, i.e., LCh has no external counterion and, probably, for this reason, it differs from ACh and Ch in the mechanism of adsorption and interaction with ROOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Paulson, D.S., Am. Chem. Soc., 2007, vol. 967, p. 124.

    CAS  Google Scholar 

  2. Gerba, C.P., Appl. Environ. Microbiol., 2015, vol. 81, p. 464.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia, Y., Niu, L., Ma, S., Li, J., Tay, F.R., and Chen, J., Prog. Polym. Sci., 2017, vol. 71, p. 53. https://doi.org/10.1016/j.progpolymsci.2017.03.0013

    Article  Google Scholar 

  4. Vereshchagin, A.N., Frolov, N.A., Egorova, K.S., Seitkalieva, M.M., and Ananikov, V.P., Int. J. Mol. Sci., 2021, vol. 22, p. 6793. https://doi.org/10.3390/ijms22136793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kap Kartasheva, Z.S., Maksimova, T.V., Sirota, T.V., Koverzanova, E.V., and Kasaikina, O.T., Pet. Chem., 1997, vol. 37, no. 3, p. 245.

    Google Scholar 

  6. Kasaikina, O.T., Kartasheva, Z.S., and Pisarenko, L.M., Russ. J. Gen. Chem., 2008, vol. 8, p. 1533.

    Article  Google Scholar 

  7. Kasaikina, O.T., Krugovov, D.A., Mengele, E.A., Berezin, M.P., and Fokin, D.A., Pet. Chem., 2015, vol. 55, no. 8, p. 679.

    Article  CAS  Google Scholar 

  8. Krugovov, D.A., Mengele, E.A, and Kasaikina, O.T., Russ. Chem. Rev., 2014, no. 8, p. 1837.

  9. Kasaikina, O.T., Potapova, N.V., Krugovov, D.A., and Berezin, M.P., Polym. Sci., Ser. B, 2017, vol. 59, no. 3, p. 225.

    Article  CAS  Google Scholar 

  10. Kasaikina, O.T., Potapova, N.V., Krugovov, D.A., and Pisarenko, L.M., Kinet. Catal., 2017, vol. 58, no. 5, p. 556.

    Article  CAS  Google Scholar 

  11. Potapova, N.V., Kasaikina, O.T., Berezin, M.P., and Plashchina, I.G., Kinet. Catal., 2020, vol. 61, no. 5, p. 786. https://doi.org/10.1134/S0023158420050079

    Article  CAS  Google Scholar 

  12. Al-Shareeda, Z.A., Abramovich, R.A., Potanina, O.G., and Alhejoj, H., Int. J. Pharm. Qual. Ass., 2020, vol. 11, p. 361. https://doi.org/10.25258/ijpqa.11.3.10

    Article  Google Scholar 

  13. Organization for Economic Co-operation and Development (OECD), SIDS Initial Assessment Reports: Choline Chloride, 2004.

  14. Hall, J.M. and Savage, L.M., Exp. Neurol., 2016, vol. 278, p. 62. https://doi.org/10.1016/j.expneurol.2016.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cox, M.A., Bassi, C., Saunders, M.E., Nechanitzky, R., Morgado-Palacin, I., Zheng, C., and Mak, T.W., J. Intern. Med., 2020, vol. 287, p. 120. https://doi.org/10.1111/joim.13006

    Article  CAS  PubMed  Google Scholar 

  16. Yonei, Y., Takahashi, Y., Hibino, S., Watanabe, M., and Yoshioka, T., J. Clin. Biochem. Nutr., 2008, vol. 42, p. 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferreira, G.C. and McKenna, M.C., Neurochem. Res., 2017, vol. 42, p. 1661. https://doi.org/10.1007/s11064-017-2288-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, M., Maki, C.R., Deng, Y., Tian, Y., and Phillips, T.D., Chem. Res. Toxicol., 2017, vol. 30, p. 1694. https://doi.org/10.1021/acs.chemrestox.7b00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kobayashi, S. and Makino, A., Chem. Rev., 2009, vol. 109, p. 5288.

    Article  CAS  PubMed  Google Scholar 

  20. Denisov, E.T. and Denisova, T.G., Handbook of Antioxidants: Bond Dissociation Energies, Rate Constants, Activation Energies and Enthalpies of Reactions, Boca Raton: CRC, 2000.

    Google Scholar 

  21. Dougherty, D.A., Acc. Chem. Res., 2013, vol. 46, p. 885.

    Article  CAS  PubMed  Google Scholar 

  22. Van Arnam, E.B. and Dougherty, D.A., J. Med. Chem., 2014, vol. 57, p. 6289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davis, M.R. and Dougherty, D.A., Phys. Chem., 2015, vol. 17, p. 29262.

    CAS  Google Scholar 

  24. Ivanchev, S.S., Radikal’naya polimerizatsiya (Radical Polymerization), Leningrad: Khimiya, 1985.

Download references

Funding

This study was carried out within the framework of State Assignments 1220328000859, 0089-2019-0008 no. AAAA-A19-119041090087-4 and was partially supported by RFBR grant no. 20-03-00753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Potapova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: QAC, quaternary ammonium compound; Ch, choline; ACh, acetylcholine; LCh, L-carnitine; PCh, egg phosphatidylcholine; HTB, tert-butyl hydroperoxide; HC, cumyl hydroperoxide; Q, quercetin; S+, cationic surfactant; SEM, scanning electron microscopy; DLS, dynamic light scattering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapova, N.V., Kasaikina, O.T., Berezin, M.P. et al. Supramolecular Catalysts for the Radical Destruction of Hydroperoxides Based on Choline Derivatives. Kinet Catal 64, 67–73 (2023). https://doi.org/10.1134/S0023158423010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423010056

Keywords:

Navigation