Skip to main content
Log in

Transformations of Pd/(N-Heterocyclic Carbene) Molecular Complexes into a Nanosized Catalyst System in the Mizoroki–Heck Reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The mechanism of formation of catalytic sites in the important Mizoroki–Heck reaction used in modern fine organic synthesis has been studied. It was found that the catalysts based on palladium complexes with N-heterocyclic carbene ligands transform into a “ligand-free” form under the conditions of the Mizoroki–Heck reaction. Molecular modeling performed using quantum-chemical methods showed that these processes compete with the target reaction at three of the six stages of the catalytic cycle. The presence of catalyst transformation products in the reaction system was confirmed by nuclear magnetic resonance and mass spectrometry. Important mechanistic data were obtained for rational design of catalyst systems for cross-coupling reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Cazin, C.S.J., N-Heterocyclic Carbenes in Transition Metalcatalysis and Organocatalysis, Berlin: Springer, 2010. https://doi.org/10.1007/978-90-481-2866-2

  2. Temkin, O.N. Kinet. Catal., 2019, vol. 60, no. 6, p. 689. https://doi.org/10.1134/S0023158419060120

    Article  CAS  Google Scholar 

  3. Díez-González, S. and Nolan, S.P., Coord. Chem. Rev., 2007, vol. 251, p. 874. https://doi.org/10.1016/j.ccr.2006.10.004

    Article  CAS  Google Scholar 

  4. Jacobsen, H., Correa, A., Poater, A., Costabile, C., and Cavallo, L., Coord. Chem. Rev., 2009, vol. 253, p. 687. https://doi.org/10.1016/j.ccr.2008.06.006

    Article  CAS  Google Scholar 

  5. Van Leeuwen, P.W., Appl. Catal., A, 2001, vol. 212, p. 61. https://doi.org/10.1016/S0926-860X(00)00844-9

  6. Magill, A.M., Yates, B.F., Cavell, K.J., Skelton, B.W., and White, A.H., Dalton Trans., 2007, vol. 31, p. 3398. https://doi.org/10.1039/B706053J

    Article  Google Scholar 

  7. Kurokhtina, A.A., Larina, E.V., Lagoda, N.A., and Shmidt, A.F., Kinet. Catal., 2022, vol. 63, pp. 543–554. https://doi.org/10.1134/S0023158422050068

    Article  CAS  Google Scholar 

  8. Larina, E.V., Kurokhtina, A.A., Lagoda, N.A., and Shmidt, A.F., Kinet. Catal., 2022, vol. 63, no. 2, p. 207. https://doi.org/10.1134/S0023158422020057

    Article  CAS  Google Scholar 

  9. Eremin, D.B., Boiko, D.A., Kostyukovich, A.Yu., Burykina, J.V., Denisova, E.A., Anania, M., Martens, J., Berden, G., Oomens, J., Roithová, J., and Ananikov, V.P., Chem. Eur. J., 2020, vol. 26, p. 15672. https://doi.org/10.1002/chem.202003533

    Article  CAS  PubMed  Google Scholar 

  10. Denisova, E.A., Eremin, D.B., Gordeev, E.G., Tsedilin, A.M., and Ananikov, V.P., Inorg. Chem., 2019, vol. 58, p. 12218. https://doi.org/10.1021/acs.inorgchem.9b01630

    Article  CAS  PubMed  Google Scholar 

  11. Chernyshev, V.M., Khazipov, O.V., Shevchenko, M.A., Chernenko, A.Y., Astakhov, A.V., Eremin, D.B., Pasyukov, D.V., Kashin, A.S., and Ananikov, V.P., Chem. Sci., 2018, vol. 9, p. 5564. https://doi.org/10.1039/C8SC01353E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaussian 16, Revision C.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., et al., Fox, D.J., Gaussian, Inc., Wallingford CT, 2016.

  13. Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, p. 6158. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  14. Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  15. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, p. 1456. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  16. Scalmani, G. and Frisch, M.J. J. Chem. Phys., 2010, vol. 132, p. 114110. https://doi.org/10.1063/1.3359469

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ananikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: NHC, N-heterocyclic carbene ligand; PCM, polarized continuum model; DMF, N,N-dimethylformamide; HPLC, high-performance liquid chromatography; NMR, nuclear magnetic resonance; ESI-MS, electrospray ionization mass spectrometry; DFT, density functional theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyukovich, A.Y., Patil, E.D., Burykina, J.V. et al. Transformations of Pd/(N-Heterocyclic Carbene) Molecular Complexes into a Nanosized Catalyst System in the Mizoroki–Heck Reaction. Kinet Catal 64, 44–54 (2023). https://doi.org/10.1134/S0023158423010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423010032

Keywords:

Navigation