Skip to main content
Log in

Antioxidant Activity of Methano- and Cyclopentenofullerenes

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The rate constant of the reaction of methano- and cyclopentenofullerenes (С60R) with a peroxyl radical (PhCH(OO)CH3) was measured in a model system of the radical-chain oxidation of ethylbenzene. Compounds with a succinimide dodecenoate substituent bonded with the fullerene molecule via the ‒С(О)(СН2)n– or –(СН2)n– groups (n = 1–5) were studied. The reactivity of С60R with respect to the ethylbenzene peroxyl radical was shown to increase relative to that of unsubstituted fullerene С60. Methanofullerenes were more reactive with the peroxyl radical than cyclopentenofullerenes. The rate constant of the reaction of С60R with PhCH(OO)CH3 decreased when the number of methylene groups (n) increased. Quantum chemical modeling showed that the substituent atoms form hydrogen bonds with the peroxyl radical in the transition states of addition at the atoms of the fullerenyl moiety of methanofullerene that are nearest to the substituent. As a result, the energy barrier of the peroxyl radical addition to fullerene decreases. In the cases when succinimide dodecenoate lies far from the fullerene molecule, the reactivity of methano- and cyclopentenofullerenes with respect to the peroxyl radical decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Grebowski, J., Konopko, A., Krokosz, A., DiLabio, G.A., and Litwinienko, G., Free Radicals Biol. Med., 2020, vol. 160, p. 734.

    Article  CAS  Google Scholar 

  2. Volkov, V.A., Voronkov, M.V., Sazhina, N.N., Kurilov, D.V., Vokhmyanina, D.V., Yamskova, O.V., Martirosyan, Yu.Ts., Atroshenko, D.L., Martirosyan, L.Yu., and Romanova, V.S., Kinet. Catal., 2021, vol. 62, no. 3, p. 395.

    Article  CAS  Google Scholar 

  3. Sharoyko, V.V., Ageev, S.V., Podolsky, N.E., Petrov, A.V., Litasova, E.V., Vlasov, T.D., Vasina, L.V., Murin, I.V., Piotrovskiy, L.B., and Semenov, K.N., J. Mol. Liq., 2021, vol. 323, p. 114990.

    Article  CAS  Google Scholar 

  4. Enes, R.F., Tomé, A.C., Cavaleiro, J.A.S., Amorati, R., Fumo, M.G., Pedulli, G.F., and Valgimigli, L., Chem. Eur. J., 2006, vol. 12, no. 17, p. 4646.

    Article  CAS  PubMed  Google Scholar 

  5. Cataldo, F., Chem. Phys. Lipids, 2010, vol. 163, no. 6, p. 524.

    Article  CAS  PubMed  Google Scholar 

  6. Matsubayashi, K., Goto, T., Kyoko, TogayaK., Kokubo, K., and Oshima, T., Nanoscale Res. Lett., 2008, vol. 3, no. 8, p. 237.

    Article  CAS  PubMed Central  Google Scholar 

  7. Yakupova, L.R., Sakhautdinov, I.M., Malikova, R.N., and Safiullin, R.L., Kinet. Catal., 2019, vol. 60, no. 1, p. 21.

    Article  CAS  Google Scholar 

  8. Yakupova, L.R., Fattakhov, A.Kh., Gimadieva, A.R., Safiullin, R.L., and Sakhautdinova, R.A., Kinet. Catal., 2013, vol. 54, no. 3, p. 279.

    Article  CAS  Google Scholar 

  9. Yakupova, L.R., Ivanova, A.V., Safiullin, R.L., Gimadieva, A.R., Chernyshenko, Yu.N., Mustafin, A.G., and Abdrakhmanov, I.B., Russ. Chem. Bull., 2010, vol. 59, no. 3, p. 517.

    Article  CAS  Google Scholar 

  10. Yakupova, L.R., Proskuryakov, S.G., Zaripov, R.N., Rameev, Sh.R., and Safiullin, R.L., Butlerov. Soobshch., 2011, vol. 28, no. 19, p. 71.

    Google Scholar 

  11. Kulitski, Z.I., Terman, L.M., Tsepalov, V.F., and Shlyapintokh, V.Ya., Izv. Akad. Nauk SSSR, Ser. Khim., 1963, no. 2, p. 253.

  12. Cand. Sci. (Chem.) Dissertation, Ufa: UIC UFRS RAS, 2022.

  13. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, vol. 54, p.820.

    Article  CAS  Google Scholar 

  14. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  PubMed  Google Scholar 

  15. Diniakhmetova, D.R., Friesen, A.K., and Kolesov, S.V., Int. J. Quantum Chem., 2020, vol. 120, no. 18, e26335.

    Article  CAS  Google Scholar 

  16. Diniakhmetova, D.R., Friesen, A.K., and Kolesov, S.V., Int. J. Quantum Chem., 2016, vol. 116, no. 7, p. 489.

    Article  CAS  Google Scholar 

  17. Sabirov, D.Sh. and Bulgakov, R.G., Comput. Theor. Chem., 2011, vol. 963, no. 1, p. 185.

    Article  CAS  Google Scholar 

  18. Sabirov, D.Sh. and Bulgakov, R.G., Chem. Phys. Lett., 2011, vol. 506, nos. 1–3, p. 52.

    Article  CAS  Google Scholar 

  19. Galimov, D.I., Gazeeva, D.R., Mukhamed’yarova, R.K., and Bulgakov, R.G., Vestnik BashGU, 2012, vol. 17, no. 4, p. 1671.

    Google Scholar 

  20. Denisov, E.T. and Azatyan, V.V., Ingibirovanie tsepnykh reaktsii (Inhibition of Chain Reactions), Chernogolovka: RAS, 1997.

  21. Tsepalov V.F. and Shlyapintokh V.Ya., Kinet. Katal., 1962, vol. 3, no. 6, p. 870.

    CAS  Google Scholar 

  22. Safarova, I.V., Sharipova, G.M., Nugumanova, E.F., and Gerchikov, A.Ya., Vestnik BashGU, 2016, vol. 21, no. 1, p. 37.

    Google Scholar 

  23. Ali, S.S., Hardt, J.I., Quick, K.L., Kim-Han, J.S., Erlanger, B.F., Huang, T.T., Epstein, C.J., and Dugan, L.L., Free Rad. Biol. Med., 2004, vol. 37, no. 8, p. 1191.

    Article  CAS  PubMed  Google Scholar 

  24. Sabirov, D.Sh., Garipova, R.R., and Bulgakov, R.G., Fullerenes, Nanotubes, Carbon Nanostruct., 2015, vol. 23, no. 12, p. 1051.

    Article  CAS  Google Scholar 

  25. Knight, B., Martín, N., Ohno, T., Ortí, E., Rovira, C., Veciana, J., Vidal-Gancedo, J., Viruela, P., Viruela, R., and Wudl, F., J. Am. Chem. Soc., 1997, vol. 119, no. 41, p. 9871.

    Article  CAS  Google Scholar 

  26. Tumanskii, B.L., Nefedova, M.N., Bashilov, V.V., Solodovnikov, S.P., Bubnov, N.N., and Sokolov, V.I., Russ. Chem. Bull., 1996, vol. 45, p. 2865.

    Article  Google Scholar 

  27. Godly, E.W. and Taylor, R., Pure Appl. Chem., 1997, vol. 69, p. 1411.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed in accordance with the research plan at Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences (topic “Mechanism and kinetic laws of oxidative transformations involving highly active intermediates in chemical and biochemical processes,” FMRS-2022-0021, 122031400255-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Yakupova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: F, degree of the inhibiting action of the inhibitor; ki, initiation rate constant; k1 and k2, rate constants of chain propagation; k6, rate constant of termination of the oxidation chain by recombination of peroxyl radicals; k7, inhibition rate constant; f, stoichiometric inhibition coefficient; PhCH2CH3, oxidized substrate (ethylbenzene); PhC(H)CH3, PhCH(OO)CH3, alkyl and peroxyl radicals formed from the substrate; AIBN, 2,2'-azo-bis-isobutyronitrile; EB, ethylbenzene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakupova, L.R., Diniakhmetova, D.R., Sakhautdinov, I.M. et al. Antioxidant Activity of Methano- and Cyclopentenofullerenes. Kinet Catal 63, 463–469 (2022). https://doi.org/10.1134/S0023158422050160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422050160

Keywords:

Navigation