Skip to main content
Log in

Features of Hydrolysis of Concentrated Aqueous Alkaline Solutions of NaBH4 on Co/TiO2 Catalyst

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Kinetic experiments were carried out on the hydrolysis of concentrated aqueous and aqueous alkaline solutions of NaBH4 with a Co/TiO2 catalyst. The experiments in the aqueous NaBH4 solutions were performed at molal concentrations of 0.25, 1, and 4 mol/kg. In the aqueous alkaline solutions with molal NaBH4 concentrations of 0.25 and 1 mol/kg, the molal NaOH concentrations were varied in the range 0.05–8 mol/kg. The activation energies in the aqueous solution and the aqueous alkaline solutions were found to be 64.3 and 53.6 kJ/mol, respectively. Features of the kinetic curves and the possible kinetic schemes were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Li, Q. and Hern Kim, H., Fuel Process. Technol., 2012, vol. 100, p. 43.

    Article  CAS  Google Scholar 

  2. Chou, C.C., Hsieh, C.H., and Chen, B.H., Energy, 2015, vol. 90, no. 2, p. 1973.

    Article  CAS  Google Scholar 

  3. Metin, O. and Ozkar, S., Energy Fuels, 2009, vol. 23, p. 3517.

    Article  CAS  Google Scholar 

  4. Ingersoll, J.C., Mani, N., Thenmozhiyal, J.C., and Muthaiah, A., J. Power Sources, 2007, vol. 173, no. 1, p. 450.

    Article  CAS  Google Scholar 

  5. Li, Q. and Kim, H., Fuel Process. Technol., 2012, vol. 100, p. 43.

    Article  CAS  Google Scholar 

  6. Hansu, T.A., Caglar, A., Sahin, O., and Kivrak, H., Mater. Chem. Phys., 2020, vol. 239, p. 122031.

    Article  CAS  Google Scholar 

  7. Ekinci, A., Horoz, S., Baytar, O., and Şahin, Ö., J. Optoelectron. Biomed. Mater., 2020, vol. 12, no. 2, p.25.

    Google Scholar 

  8. Didehban, A., Zabihi, M., and Shahrouzi, J.R., Int. J. Hydrogen Energy, 2018, vol. 43, no. 45, p. 20645.

    Article  CAS  Google Scholar 

  9. Xu, J., Du, X., Wei, Q., and Huang, Y., ChemistrySelect, 2020, vol. 5, p. 6683.

    Article  CAS  Google Scholar 

  10. Wang, L., Li, Z., Zhang, Y., Zhang, T., and Xie, G., J. Alloys Compd., 2017, vol. 702, p. 649.

    Article  CAS  Google Scholar 

  11. Shang, Y., Chen, R., and Jiang, G., Int. J. Hydrogen Energy, 2008, vol. 33, no. 22, p. 6719.

    Article  CAS  Google Scholar 

  12. Huang, Y.-H., Su, C.-C., Wang, S.-C., and Lu, M.-C., Energy, 2012, vol. 46, p. 242.

    Article  CAS  Google Scholar 

  13. Demirci, U.B. and Garin, F., J. Alloys Compd., 2008, vol. 463, p. 107.

    Article  CAS  Google Scholar 

  14. Zhang, Q., Wu, Y., Sun, X., and Ortega, J., Ind. Eng. Chem. Res., 2007, vol. 46, p. 1120.

    Article  CAS  Google Scholar 

  15. Shen, X., Wang, Q., Wu, Q., Guo, S., Zhang, Z., Sun, Z., Liu, B., Wang, Z., Zhao, B., and Ding, W., Energy, 2015, vol. 90, no. 1, p. 464.

    Article  CAS  Google Scholar 

  16. Xie, L., Wang, K., Du, G., Asiri, A.M., and Sun, X., Int. J. Hydrogen Energy, 2017, vol. 42, no. 2, p. 30639.

    Article  CAS  Google Scholar 

  17. Shabunya, S.I., Minkina, V.G., Kalinin, V.I., Sankir, N.D., and Altaf, S.T., Kinet. Catal., 2021, vol. 62, no. 3, p. 350.

    Article  CAS  Google Scholar 

  18. Mochalov, K.N. and Khain, V.S., Kinet. Katal., 1965, vol. 6, no. 4, p. 541.

    CAS  Google Scholar 

  19. Kreevoy, M.M. and Hutchins, J.E.C., J. Am. Chem. Soc., 1972, vol. 94, p. 6371.

    Article  CAS  Google Scholar 

  20. Shabunya, S.I., Minkina, V.G., Martynenko, V.V., and Kalinin, V.I., Russ. Chem. Bull., 2019, no. 6, p. 1183.

  21. Wei Y., Wang R., Meng L., Wang Y., Li G., Xin S., Zhao X., Zhang K., Int. J. Hydrogen Energy, 2017, vol. 42, no. 15, p. 9945.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Minkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Abbreviations and notation: ξ, degree of decomposition of NaBH4; R, rate constant, mol/s/m2; Ni, number of moles of the ith component; \({{Q}_{{{\text{H}_{2}}}}}\), rate of hydrogen generation, mL/min/g catalyst; \({{\varepsilon }_{\text{empt}}}\), fraction of the free surface; \({{\varepsilon }_{i}}\), fraction of the surface that is occupied by particles of type i; \({\text{M}_{i}}\), particles of type i, initiating the desorption of adsorbed particles; Ea, activation energy, J/mol; Rg, universal gas constant, J/mol/K; and \(k\), hydration number.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabunya, S.I., Minkina, V.G. & Kalinin, V.I. Features of Hydrolysis of Concentrated Aqueous Alkaline Solutions of NaBH4 on Co/TiO2 Catalyst. Kinet Catal 63, 585–592 (2022). https://doi.org/10.1134/S002315842205010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842205010X

Keywords:

Navigation