Skip to main content
Log in

Study of Nickel Catalysts Supported on MnOx–CeO2 Mixed Oxides in Dry Reforming of Methane

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Nickel-containing (10 wt % Ni) catalysts supported on CeO2–MnOх oxides with different Ce/Mn ratios (0.25, 1, and 9) have been synthesized and studied in dry reforming of methane (DRM). The low-temperature N2 sorption, XRD, and H2-TPR methods have been used to study the effect of the Ce/Mn ratio on the phase composition of the catalysts and the size and distribution of the Ni-containing oxide precursor to determine the role of MnOx phases and the Ce1 − xMnxO2 − δ solid solution in the formation of the active surface of the catalysts. The addition of manganese oxide contributes to the incorporation of Nin+ cations into the surface structure to form solid solutions, which leads to a decrease in the size of NiO crystallites on the support surface. The synthesized catalysts have been studied in the DRM process in the long-run temperature testing mode for 24 h. The catalyst based on a support with a Ce/Mn weight ratio of 0.25 has exhibited the highest activity and stability in DRM (X(CH4)/X(CO2) = 47/70); this fact has been attributed to the existence of a developed MnOx interface and the presence of fine Ni and MnNiOx particles on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreibera, A., and Müller, T.E., Energy Environ. Sci., 2012, vol. 5, p. 7281.

    Article  Google Scholar 

  2. Yabe, T. and Sekine, Y., Process. Technol., 2018, vol. 181, p. 187.

    Article  CAS  Google Scholar 

  3. Nikoo, M.K. and Amin, N.A.S., Fuel Process. Technol., 2011, vol. 92, p. 678.

    Article  CAS  Google Scholar 

  4. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., and Ahmad, M.N., Renewable and Sustainable Energy Revi., 2018, vol. 82, p. 2570.

    Article  CAS  Google Scholar 

  5. Lavoie, J.M., Front. Chem., 2014, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  6. Pakhare, D. and Spivey, J., Chem. Soc. Rev., 2014, vol. 43, p. 7813.

    Article  CAS  PubMed  Google Scholar 

  7. Muraleedharan Nair, M. and Kaliaguine, S., New J. Chem. 2016, vol. 40, p. 4049.

    Article  CAS  Google Scholar 

  8. Tsipouriari, V.A. and Verykios, X.E., J. Catal., 1999, vol. 187, p. 85.

    Article  CAS  Google Scholar 

  9. Sokolov, S., Kondratenko, E.V., Pohl, M.M., Barkschat, A., and Rodemerck, U., Appl. Catal., B, 2012, vols. 113–114, p. 19.

    Article  Google Scholar 

  10. Singha, R.K., Yadav, A., Agrawal, A., Shukla, A., and Adak, S., Appl. Catal., B, 2016, vol. 191, p. 165.

    Article  CAS  Google Scholar 

  11. Amin, M.H., Catalysts, 2020, vol. 10, article no. 51.

    Article  CAS  Google Scholar 

  12. Cheng, H., Feng, S., Tao, W., Lu, X., Yao, W., and Li, G., Int. J. Hydrogen Energy, 2014, vol. 39, p. 12604.

    Article  CAS  Google Scholar 

  13. Hou, Z., Chen, P., Fang, H., Zheng, X., and Yashima, T., Int. J. Hydrogen Energy, 2006, vol. 31, p. 555.

    Article  CAS  Google Scholar 

  14. Yu, M., Zhu, Y.-A., Lu, Y., Tong, G., Zhu, K., and Zhou, X., Appl. Catal., B, 2015, vol. 165, p. 43.

    Article  CAS  Google Scholar 

  15. Theofanidisa, S.A., Galvita, V.V., Sabbe, M., Poelman, H., Detavernier, C., and Marin, G.B., Appl. Catal., B, 2017, vol. 209, p. 405.

    Article  Google Scholar 

  16. Gao, X., Tan, Z., Hidajat, K., and Kawi, S., Catal. Today, 2017, vol. 281, p. 250.

    Article  CAS  Google Scholar 

  17. Luisetto, I., Tuti, S., and Di Bartolomeo, E., Int. J. Hydrogen Energy, 2012, vol. 37, p. 15992.

    Article  CAS  Google Scholar 

  18. Argyle, M.D. and Bartholomew, C.H., Catalysts, 2015, vol. 5, p. 145.

    Article  CAS  Google Scholar 

  19. Papadopoulou, C., Matralis, H., and Verykios, X., Catalysis for Alternative Energy Generation, Berlin: Springer, 2012, p. 57.

    Google Scholar 

  20. Seo, H.O., Catalysts, 2018, vol. 8, article no. 110.

    Article  Google Scholar 

  21. Roh, H.-S., Potdar, H., and Jun, K.-W., Catal. Today, 2004, vol. 93, p. 39.

    Article  Google Scholar 

  22. Tatiparthi, V. and Pintar, S.A., Appl. Catal., A, 2020, vol. 599, p. 117603.

  23. Aghamohammadi, S., Haghighi, M., Maleki, M., and Rahemi, N., Mol. Catal., 2017, vol. 431, p. 39.

    Article  CAS  Google Scholar 

  24. Zhang, S., Muratsugu, S., Ishiguro, N., and Tada, M., ACS Catal., 2013, vol. 3, p. 1855.

    Article  Google Scholar 

  25. Yan, X., Hu, T., Liu, P., Li, S., Zhao, B., Zhang, Q., Jiao, W., Chen, S., Wang, P., Lu, J., Fan, L., Deng, X., and Pan, Y.-X., Appl. Catal., B, 2019, vol. 246, p. 221.

    Article  CAS  Google Scholar 

  26. Wang, N., Qian, W., Chu, W., and Wei, F., Catal. Sci. Technol., 2016, vol. 6, p. 3594.

    Article  CAS  Google Scholar 

  27. Laosiripojana, N. and Assabumrungrat, S., Appl. Catal., B, 2005, vol. 60, p. 107.

    Article  CAS  Google Scholar 

  28. Chang, K., Zhang, H., Cheng, M., and Lu, Q., ACS Catal., 2020, vol. 10, p. 613.

    Article  CAS  Google Scholar 

  29. Mousavi, S.M., Meshkani, F., and Rezaei, M., Int. J. Hydrogen Energy, 2017, vol. 42, p. 24776.

    Article  CAS  Google Scholar 

  30. Littlewood, P., Xie, X., Bernicke, M., Thomas, A., and Schomacker, R., Catal. Today, 2015, vol. 242, p. 111.

    Article  CAS  Google Scholar 

  31. Jampaiah, D., Venkataswamy, P., Tur, K.M., Ippolito, S.J., Bhargava, S.K., and Reddy, B.M., Anorg. Allg. Chem., 2015, p. 1141.

    Google Scholar 

  32. Machida, M., Uto, M., Kurogi, D., and Kijima, T., Chem. Mater., 2000, vol. 12, p. 3158.

    Article  CAS  Google Scholar 

  33. Mousavi, S.M., Niaei, A., Illan Gomez, M.J., Salari, D., Panahi, P.N., and Abaladejo-Fuentes, V., Mater. Chem. Phys., 2014, vol. 143, p. 921.

    Article  CAS  Google Scholar 

  34. He, H., Junheng, L., Ping, S., Song, Y., and Bingxia, L., RSC Adv., 2017, vol. 7, p. 7406.

    Article  Google Scholar 

  35. Huang, C., Liu, J., Sun, P., Liang, X., Tang, C., and Wu, H., Energy Sources, Part A, 2019, vol. 1, p. 11.

    Google Scholar 

  36. Lin, X., Li, S., He, H., Wu, Z., Wu, J., Chen, L., and Fu, M., Appl. Catal., B, 2018, vol. 223, p. 91.

    Article  CAS  Google Scholar 

  37. Matus, E.V., Shlyakhtina, A.S., Sukhova, O.B., Ismagilov, I.Z., Ushakov, V.A., Yashnik, S.A., Nikitin, A.P., Bharali, P., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2019, vol. 60, no. 2, p. 221.

    Article  CAS  Google Scholar 

  38. Buciuman, F., Patcas, F., Craciun, R., and Zahn, D.R.T., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 185.

    Article  CAS  Google Scholar 

  39. Atzori, L., Cutrufello, M.G., Meloni, D., Cannas, C., Gazzoli, D., Monaci, R., Sini, M.F., and Rombi, E., Catal. Today, 2018, vol. 299, p. 183.

    Article  CAS  Google Scholar 

  40. Karmakar, S. and Behera, D., Ceram. Int., 2019, vol. 45, p. 13052.

    Article  CAS  Google Scholar 

  41. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., La Parola, V., Liotta, L.F., and Vodyankina, O.V., Appl. Catal., B, 2020, vol. 260, p. 118148(1).

  42. Andreoli, S., Deorsola, F.A., and Pirone, R., Catal. Today, 2015, vol. 253, p. 199.

    Article  CAS  Google Scholar 

  43. Tang, X., Li, Y., Huang, X., Xu, Y., Zhu, H., Wang, J., and Shen, W., Appl. Catal., B, 2006, vol. 62, p. 265.

    Article  CAS  Google Scholar 

  44. Yu, M., Zhu, Y.-A., Lu, Y., Tong, G., Zhua, K., and Zhou, X., Appl. Catal., B, 2015, vol. 165, p. 43.

    Article  CAS  Google Scholar 

  45. Nematollahi, B., Rezaei, M., and Lay, E.N., Int. J. Hydrogen Energy, 2015, vol. 40, p. 8539.

    Article  CAS  Google Scholar 

  46. Barrio, L., Kubacka, A., Zhou, G., Estrella, M., Martınez-Arias, A., Hanson, J.C., Fernandez-Garcia, M., and Rodriguez, J.A., J. Phys. Chem. C, 2010, vol. 114, p. 12689.

    Article  CAS  Google Scholar 

  47. Grabchenko, M., Pantaleo, G., Puleo, F., Vodyankina, O., and Liotta, L.F., Int. J. Hydrogen Energy, 2021 (in press).

  48. Lu, B., Zhuang, J., Du, J., Gu, F., Xu, G., Zhong, Z., Liu, Q., and Su, F., Catalysts, 2019, vol. 9, p. 282.

    Article  Google Scholar 

  49. Tamagawa, H., Oyama, K., Yamaguchi, T., Tanaka, H., Tsuiki, H., and Ueno, A., J. Chem. Soc., Faraday Trans., 1987, vol. 83, p. 3189.

    Article  CAS  Google Scholar 

  50. Bai, X., Wang, S., Sun, T., and Wang, S., React. Kinet., Mech. Catal., 2014, vol. 122, p. 437.

    Article  Google Scholar 

  51. Wang, S., Lu, G., and Millar, G.J., Energy Fuels, 1996, vol. 10, p. 896.

    Article  CAS  Google Scholar 

  52. Krylov, O.V., Mamedov, A.Kh., and Mirzabekova, S.R., Catal. Today, 1998, vol. 42, p. 211.

    Article  CAS  Google Scholar 

  53. Pike, J., Hanson, J., Zhang, L., and Chan, S.-W., Chem. Mater., 2007, vol. 19, p. 5609.

    Article  CAS  Google Scholar 

  54. Yao, L., Zhu, J., Peng, X., Tong, D., and Hu, C., Int. J. Hydrogen Energy, 2013, vol. 38, p. 7268.

    Article  CAS  Google Scholar 

  55. Touahra, F., Sehailia, M., Halliche, D., Bachari, K., Saadi, A., and Cherifi, O., Int. J. Hydrogen Energy, 2016, vol. 41, p. 21140.

    Article  CAS  Google Scholar 

  56. Lu, G.Q. and Wang, S., CHEMTECH., 1999, p. 37.

  57. Seok, S.-Ho, Han, S.H., and Lee, J.S., Appl. Catal., A, 2001, vol. 215, p. 31.

Download references

Funding

This work was supported by a project of the Russian Science Foundation (agreement no. 19-73-30026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Grabchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: DRM, dry reforming of methane; H2-TPR, temperature-programmed reduction with hydrogen; XRF, X-ray fluorescence analysis; Ssp, specific surface area; BET, Brunauer–Emmett–Teller method; BJH, Barrett–Joyner–Halenda method; XRD, X-ray diffraction analysis; TPO, temperature-programmed oxidation; TGA, thermogravimetric analysis; CSR, coherent scattering region; NPs, nanoparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabchenko, M.V., Dorofeeva, N.V., Lapin, I.N. et al. Study of Nickel Catalysts Supported on MnOx–CeO2 Mixed Oxides in Dry Reforming of Methane. Kinet Catal 62, 765–777 (2021). https://doi.org/10.1134/S0023158421060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421060069

Keywords:

Navigation