Skip to main content
Log in

Influence of the Ag Content on the Activity of Ag/CeO2 Catalysts in the Reduction of 4-Nitrophenol at Room Temperature and Atmospheric Pressure

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Functionalized aromatic amines are an important basis for the production of pharmaceuticals, agrochemicals, polymers, dyes, and other industrially significant products. The catalytic reduction of nitroarenes to aromatic amines is one of the methods most commonly used for the production of amines both in industry and in the laboratory. In this work, we synthesized Ag/CeO2 catalysts with different silver contents (1, 3, 5, and 10 wt %) and studied the physicochemical and catalytic properties of these systems. The effect of the amount of an active component (Ag) on the activity of the catalyst in the reduction of 4-nitrophenol with sodium borohydride in water at room temperature and atmospheric pressure was shown. As the silver content was increased to 10 wt %, the rate of reaction increased, but the absolute activity (TOF) decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Trandafir, M.M, Moragues, A., Amoros, P., and Parvulescu, V.I., Catal. Today, 2019 (in press). https://doi.org/10.1016/j.cattod.2019.02.053

  2. Zhang, K., Suh, J.M., Choi, J.-W., Jang, H.W., Shokouhimehr, M., and Varma, R.S., ACS Omega, 2019, vol. 4, p. 483.

    Article  CAS  Google Scholar 

  3. Liao, G., Gong, Y., Zhong, L., Fang, J., Zhang, L., Xu, Z., Gao, H., and Fang, B., Nano Res., 2019, vol. 12, p. 2407.

    Article  CAS  Google Scholar 

  4. Goksu, H., Sert, H., Kilbas, B., and Sen, F., Curr. Org. Chem., 2017, vol. 21. № 9, p. 794.

    Article  CAS  Google Scholar 

  5. Patra, A.K., Vo, N.T., and Kim, D., Appl. Catal., A, 2017, vol. 538, p. 148.

  6. Zhang, R., Liu, J., Li, F., Wang, S., Xia, C., and Sun, W., Chin. J. Chem., 2011, vol. 29, p. 525.

    Article  CAS  Google Scholar 

  7. Takenaka, Y., Kiyosu, T., Choi, J.C., Sakakura, T., and Yasuda, H., Green Chem., 2009, vol. 11, p. 1385.

    Article  CAS  Google Scholar 

  8. Shukla, A., Singha, R.K., Sasaki, T., and Bal, R., Green Chem., 2015, vol. 17, issue 2, p. 785.

    Article  CAS  Google Scholar 

  9. Han, J., Fang, P., Jiang, W., Li, L., and Guo, R., Langmuir, 2012, vol. 28, p. 4768.

    Article  CAS  Google Scholar 

  10. Wang, H., Dong, Z., and Na, C., ACS Sustainable Chem. Eng., 2013, vol. 1, p. 746.

    Article  CAS  Google Scholar 

  11. Ye, W., Yu, J., Zhou, Y., Gao, D., Wang, D., Wang, C., and Xue, D., Appl. Catal., B, 2016, vol. 181, p. 371.

    Article  CAS  Google Scholar 

  12. Zhang, K., Suh, J.M., Choi, J.-W., Jang, H.W., Shokouhimehr, M., and Varma, R.S., ACS Omega, 2019, vol. 4, p. 483.

    Article  CAS  Google Scholar 

  13. Saravanakumar, K., Ramjan, M.M., Suresh, P., and Muthuraj, V., J. Alloys Compd., 2016, vol. 664, p. 149.

    Article  CAS  Google Scholar 

  14. Trovarelli, A. and Llorca, J., ACS Catal., 2017, vol. 7, issue 7, p. 4716.

    Article  CAS  Google Scholar 

  15. Mitsudome, T., Mikami, Y., Matoba, M., Mizugaki, T., Jitsukawa, K., and Kaneda, K., Angew. Chem., 2012, vol. 51, p. 136.

    Article  CAS  Google Scholar 

  16. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., La Parola, V., Liotta, L.F., and Vodyankina, O.V., Appl. Catal., B, 2020, vol. 260, p. 118148.

    Article  CAS  Google Scholar 

  17. Qin, G.W., Pei, W., Ma, X., Xu, X., Ren, Y., Sun, W., and Zuo, L., J. Phys. Chem. C, 2010, vol. 114, p. 6909.

    Article  CAS  Google Scholar 

  18. Baran, N.Y., Baran, T., Nasrollahzadeh, M., and Varma, R.S., J. Organomet. Chem., 2019, vol. 900, p. 120916.

    Article  CAS  Google Scholar 

  19. Aswathy Aromal, S. and Philip, D., Spectrochim. Acta A, 2012, vol. 97, p. 1.

    Article  CAS  Google Scholar 

  20. Budi, C.S., Deka, J.R., Saikia, D., Kao, H.M., and Yang, Y.C., J. Hazard. Mater., 2020, vol. 384, p. 121270.

    Article  CAS  Google Scholar 

  21. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Kenneth, S.W., Pure Appl. Chem., 2015, vol. 87, p. 1051.

    Article  CAS  Google Scholar 

  22. Mikheeva, N.N., Zaikovskii, V.I., and Mamontov, G.V., Microporous Mesoporous Mater., 2019, vol. 277, p. 10.

    Article  CAS  Google Scholar 

  23. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., Liotta, L.F., and Vodyankina, O.V., Appl. Catal., B, 2018, vol. 221, p. 598.

    Article  CAS  Google Scholar 

  24. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., and Vodyankina, O.V., Kinet. Catal., 2017, vol. 58, no. 5, p. 642.

    Article  CAS  Google Scholar 

  25. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., Parola, V.La, Liotta, L.F., and Vodyankina, O.V., Catal. Today, 2019, vol. 333, p. 2.

    Article  CAS  Google Scholar 

  26. Schlichter, S., Rocha, M., Peixoto, A.F., Pires, J., Freire, C., and Alvarez, M., Polyhedron, 2018, vol. 150, p. 69.

    Article  CAS  Google Scholar 

  27. Wang, Y.-Y., Shu, Y., Xu, J., and Pang, H., CrystEngComm., 2017, vol. 19, p. 684.

    Article  Google Scholar 

  28. Liao, G.F., Fang, J.S., Li, Q., Li, S.H., Xu, Z.S., and Fang, B.Z., Nanoscale, 2019, vol. 11, p. 7062.

    Article  CAS  Google Scholar 

  29. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., and Vodyankina, O.V., Catal. Today, 2016, vol. 278, p. 150.

    Article  CAS  Google Scholar 

  30. Jiang, S.-F., Ling, L.-L, Xu, Z., Liu, W.-J., and Jiang, H., Ind. Eng. Chem. Res., 2018, vol. 57, p. 13055.

    Article  CAS  Google Scholar 

  31. Liu, Y., Jiang, G., Li, L., Chen, H., Huang, Q., Jiang, T., and Du, X., Mater. Res. Soc. Commun., 2016, vol. 6, p. 31.

    CAS  Google Scholar 

  32. Qiu, X., Liu, Q., Song, M. X., and Huang, C., J. Colloid Interface Sci. 2016, vol. 477, p. 131.

    Article  CAS  Google Scholar 

  33. Shi, Y., Zhang, X., Zhu, Y., Tan, H., Chen, X., and Lu, Z.-H., RSC Adv., 2016, vol. 6, p. 47966.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-73-10109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Chernykh.

Additional information

Translated by V. Makhlyarchuk

Abbreviations: HR TEM, high resolution transmission electron microscopy; TPR-H2, temperature-programmed reduction with hydrogen; TOF, turnover function; BJH, Barrett–Joyner–Halenda method; BET, Brunauer–Emmett–Teller method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernykh, M.V., Mikheeva, N.N., Zaikovskii, V.I. et al. Influence of the Ag Content on the Activity of Ag/CeO2 Catalysts in the Reduction of 4-Nitrophenol at Room Temperature and Atmospheric Pressure. Kinet Catal 61, 794–800 (2020). https://doi.org/10.1134/S002315842005002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842005002X

Keywords:

Navigation