Skip to main content
Log in

Kinetic Models of Ethylene Oxide Production on Ag Catalysts: A Review

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Process modeling and design of the ethylene oxide production plant is mainly depended on the kinetics of the ethylene oxide production reactions. In this article, the kinetics equations for partial oxidation (epoxidation) of ethylene on silver catalyst were reviewed. There are three competitive reactions in this system: ethylene partial and total oxidation and ethylene oxide total oxidation. The reaction rate equations for these three reactions were compared and advantage and the disadvantage of kinetic models were discussed. Dichloroethane (DCE) is used in these reactions to increase the ethylene oxide selectivity. Therefore, the kinetics of the reactions considering the role of DCE is also reported. Most of the kinetics models have some weaknesses. However, one of the reviewed models was the complete model because of including all three reactions of partial and total oxidation of ethylene and total oxidation of ethylene oxide. Also, this model considered the concentration of selectivity promoter (DCE) and reverse reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ren, D., Xu, H., Li, J., Li, J., and Cheng, D., Mol. Catal., 2017, vol. 441, p. 92.

    Article  CAS  Google Scholar 

  2. Devanney, M.T., Ethylene Oxide, CEH Marketing Report, Chemical Economics Handbook, SRI Consulting, 2019, p. 15.

    Google Scholar 

  3. Zomerdijk, J.C. and Hall, M.W., Catal. Rev., 1981, vol. 23, p. 163.

    Article  CAS  Google Scholar 

  4. Kilty, P.A. and Sachtler, W.M.H., Catal. Rev., 1974, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  5. Guseinov, S.L., Frolkina, I.T., Vasilevich, L.A., Avetisov, A.K., and Gel’bstein, A.I., React. Kinet. Catal. Lett., 1977, vol. 6, p. 409.

    Article  CAS  Google Scholar 

  6. Demidov, D.V., Prosvirin, I.P., Sorokin, A.M., Rocha, T., Knop-Gericke, A., and Bukhtiyarov, V.I., Kinet. Catal., 2011, vol. 52, p. 855.

    Article  CAS  Google Scholar 

  7. Zhu, L., Xu, H., Nan, Y., Xie, Y., Zhu, J., and Cheng, D., Appl. Surf. Sci., 2019, vol. 476, p. 115.

    Article  CAS  Google Scholar 

  8. van den Reijen, J.E., Versluis, W.C., Kanungo, S., d’Angelo, M.F., de Jong, K.P., and de Jongh, P.E., Catal. Today, 2019, vol. 338, p. 31.

    Article  CAS  Google Scholar 

  9. Chen, C.-J., Harris, J.W., and Bhan, A., Chem. Eur. J., 2018, vol. 24, p. 12405.

    Article  CAS  Google Scholar 

  10. Partopour, B. and Dixon, A.G., AIChE J., 2017, vol. 63, p. 87.

    Article  CAS  Google Scholar 

  11. Aryana, S., Ahmadi, M., Gomes, Vincent G., Romagnoli, Jose A., and Ngian, K., Chem. Prod. Process Model., 2009, vol. 4, no. 1, article 14.

  12. Kolobashkin, V.S., Avetisov, A.K., Shub, F.S., and Slinko, M.G., Khim. Prom-st., 1989, no. 12, p. 888.

  13. Ghazali, S., Park, D.W., and Gau, G., Appl. Catal., 1983, vol. 6, p. 195.

    Article  CAS  Google Scholar 

  14. Klugherz, P.D. and Harriott, P., AIChE J., 1971, vol. 17, p. 856.

    Article  CAS  Google Scholar 

  15. Petrov, L., Eliyas, A., and Shopov, D., Appl. Catal., 1986, vol. 24, p. 145.

    Article  CAS  Google Scholar 

  16. Petrov, L., Eliyas, A., and Shopov, D., Appl. Catal., 1985, vol. 18, p. 87.

    Article  CAS  Google Scholar 

  17. Petrov, L., Eliyas, A., Maximov, C., and Shopov, D., Appl. Catal., 1988, vol. 41, p. 23.

    Article  CAS  Google Scholar 

  18. Al-Saleh, M.A., Al-Ahmadi, M.S., and Shalabi, M.A., Chem. Eng. J., 1988, vol. 37, p. 35.

    Article  CAS  Google Scholar 

  19. Borman, P.C. and Westerterp, K.R., Ind. Eng. Chem. Res., 1995, vol. 34, p. 49.

    Article  CAS  Google Scholar 

  20. Lafarga, D., Al-Juaied, M.A., Bondy, C.M., and Varma, A., Ind. Eng. Chem. Res., 2000, vol. 39, p. 2148.

    Article  CAS  Google Scholar 

  21. Carucci, J.R.H., Halonen, V., Eränen, K., Wärnå, J., Ojala, S., Huuhtanen, M., Keiski, R., and Salmi, T., Ind. Eng. Chem. Res., 2010, vol. 49, p. 10897.

    Article  CAS  Google Scholar 

  22. Salmi, T., Carucci, J.H., Roche, M., Eränen, K., Wärnå, J., and Murzin, D., Chem. Eng. Sci., 2013, vol. 87, p. 306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fazeli.

Additional information

Abbreviations: EO, ethylene oxide; DCE, 1,2-dichloroethane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazeli, A., Naseri, A. & Eslamjamal, F. Kinetic Models of Ethylene Oxide Production on Ag Catalysts: A Review. Kinet Catal 61, 603–612 (2020). https://doi.org/10.1134/S0023158420040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420040059

Keywords:

Navigation