Skip to main content
Log in

Mechanistic Studies of Methanol Synthesis Reaction over Cu and Pd–Cu Catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Monometallic copper and bimetallic palladium–copper catalysts supported on ZnO–Al2O3, CeO2–Al2O3 and ZrO2–Al2O3 were prepared by conventional impregnation method and tested in the methanol synthesis reaction in a gradient less reactor under elevated pressure (3.5 MPa) at 220°C. The physicochemical properties of prepared catalytic systems were studied using BET, TPR-H2, TPD-NH3, XRD, SEM-EDS and FT-IR techniques. The results of XRD and SEM-EDS measurements showed the formation of Pd–Cu alloy during the activation of bimetallic catalysts. It was found that the formed alloy was responsible for the improved activity and selectivity of catalysts in the studied reaction. Among investigated catalysts, the highest formation rate of methanol was observed with 2%Pd–20%Cu/ZnO–Al2O3 system. Based on the results of FT-IR measurements it can be concluded that hydrogen molecules adsorb dissociatively on the metallic copper surface to form hydrogen atoms, increasing the hydrogen spillover effect on the metal-support interface. In contrast, CO2 adsorb on the oxygen vacancies of the support to form carbonates, which can further undergo hydrogenation to methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Davis, S.J., Caldeira, K., and Matthews, H.D., Science, 2010, vol. 329, no. 5997, p. 1330.

    Article  CAS  Google Scholar 

  2. Pontzen, F., Liebner, W., Gronemann, V., Rothaemel, M., and Ahlers, B., Catal. Today, 2011, vol. 171, no. 1, p. 242.

    Article  CAS  Google Scholar 

  3. Ansari, M.B., and Park, S.-E., Energy Environ. Sci., 2012, vol. 5, no. 11, p. 9419.

    Article  CAS  Google Scholar 

  4. Raudaskoski, R., Turpeinen, E., Lenkkeri, R., Pongrácz, E., and Keiski, R.L., Catal. Today, 2009, vol. 144, no. 3, p. 318.

    Article  CAS  Google Scholar 

  5. Räuchle, K., Plass, L., Wernicke, H.-J., and Bertau, M., Energy Technol., 2016, vol. 4, no. 1, p. 193.

    Article  Google Scholar 

  6. Inui, T., Hara, H., Takeguchi, T., and Kim, J.-B., Catal. Today, 1997, vol. 36, no. 1, p. 25.

    Article  CAS  Google Scholar 

  7. Koizumi, N., Jiang, X., Kugai, J., and Song, C., Catal. Today, 2012, vol. 194, no. 1, p. 16.

    Article  CAS  Google Scholar 

  8. Saito, M., Fujitani, T., Takeuchi, M., and Watanabe, T., Appl. Catal., A, 1996, vol. 138, no. 2, p. 311.

  9. Arena, F., Italiano, G., Barbera, K., Bordiga, S., Bonura, G., Spadaro, L., and Frusteri, F., Appl.Catal., A, 2008, vol. 350, no. 1, p. 16.

  10. Graciani, J., Mudiyanselage, K., Xu, F., Baber, A.E., Evans, J., Senanayake, S.D., Stacchiola, D.J., Liu, P., Hrbek, J., Sanz, J.F., and Rodriguez, J.A., Science, 2014, vol. 345, no. 6196, p. 546.

    Article  CAS  Google Scholar 

  11. Sahibzada, M., Chem. Eng. Res. Des., 2000, vol. 78, no. 7, p. 943.

    Article  CAS  Google Scholar 

  12. Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., Jones, W., Brookes, C., Morgan, D., and Lalev, G., J. Catal., 2016, vol. 343, no. 1, p. 133.

    Article  CAS  Google Scholar 

  13. Chiavassa, D.L., Barrandeguy, J., Bonivardi, A.L., and Baltanás, M.A., Catal. Today, 2008, vols. 133–135, no. 1, p. 780.

    Article  Google Scholar 

  14. Liang, X.-L., Dong, X., Lin, G.-D., and Zhang, H.-B., Appl. Catal., B, 2009, vol. 88, no. 3, p. 315.

    Article  CAS  Google Scholar 

  15. Fujitani, T., Saito, M., Kanai, Y., Watanabe, T., Nakamura, J., and Uchijima, T., Appl.Catal., A, 1995, vol. 125, no. 2, p. 199.

  16. Shao, C., Fan, L., Fujimoto, K., and Iwasawa, Y., Appl. Catal., A, 1995, vol. 128, no. 1, p. 1.

  17. Collins, S.E., Chiavassa, D.L., Bonivardi, A.L., and Baltanás, M.A., Catal. Lett., 2005, vol. 103, no. 1, p. 83.

    Article  CAS  Google Scholar 

  18. Zhang, L., Pan, L., Ni, C., Sun, T., Zhao, S., Wang, S., Wang, A., and Hu, Y., Int. J. Hydrogen Energy, 2013, vol. 38, no. 11, p. 4397.

    Article  CAS  Google Scholar 

  19. Sonneveld, E.J. and Visser, J.W., J. Appl. Crystallogr., 1975, vol. 8, no. 1, p. 1.

    Article  Google Scholar 

  20. Ahouari, H., Soualah, A., Le Valant, A., Pinard, L., Magnoux, P., and Pouilloux, Y., React. Kinet. Mech. Cat., 2013, vol. 110, no. 1, p. 131.

    Article  CAS  Google Scholar 

  21. Zhang, B., Hui, S., Zhang, S., Ji, Y., Li, W., and Fang, D., J. Nat. Gas Chem., 2012, vol. 21, no. 5, p. 563.

    Article  Google Scholar 

  22. Huang, C., Chen, S., Fei, X., Liu, D., and Zhang, Y., Catalysts, 2015, vol. 5, no. 4, p. 1846.

    Article  CAS  Google Scholar 

  23. Schuyten, S., Guerrero, S., Miller, J.T., Shibata, T., and Wolf, E.E., Appl. Catal., A, 2009, vol. 352, no. 1, p. 133.

  24. Mierczynski, P., Ciesielski, R., Kedziora, A., Shtyka, O., and Maniecki, T.P., Fibre Chem., 2016, vol. 48, no. 4, p. 271.

    Article  CAS  Google Scholar 

  25. Jiang, X., Koizumi, N., Guo, X., and Song, C., Appl. Catal., B, 2015, vols. 170–171, no. 0, p. 173.

    Article  Google Scholar 

  26. Jiang, X., Wang, X., Nie, X., Koizumi, N., Guo, X., and Song, C., Catal. Today, 2018, vol. 316, no. 1, p. 62.

    Article  CAS  Google Scholar 

  27. Hu, B., Yin, Y., Liu, G., Chen, S., Hong, X., and Tsang, S.C.E., J. Catal., 2018, vol. 359, no. 1, p. 17.

    Article  CAS  Google Scholar 

  28. Melián-Cabrera, I., López Granados, M., and Fierro, J.L.G., Catal. Lett., 2002, vol. 79, no. 1, p. 165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ciesielski.

Additional information

Abbreviations: RWGS, reverse water gas shift reaction; TPR-H2, H2 temperature-programmed reduction; TCD, a thermal conductivity detector; TPD-NH3, NH3 temperature programmed desorption; SEM, scanning electron microscopy; EDS – energy dispersive X-ray spectroscopy; GC, gas chromatography; XRD, X-ray diffraction; FT-IR, Fourier-transform infrared spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciesielski, R., Shtyka, O., Zakrzewski, M. et al. Mechanistic Studies of Methanol Synthesis Reaction over Cu and Pd–Cu Catalysts. Kinet Catal 61, 623–630 (2020). https://doi.org/10.1134/S0023158420040035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420040035

Keywords:

Navigation