Skip to main content
Log in

PdIn/Al2O3 Intermetallic Catalyst: Structure and Catalytic Characteristics in Selective Hydrogenation of Acetylene

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The structure and catalytic characteristics of a bimetallic catalyst containing Pd1In1 nanoparticles deposited on the surface of γ-Al2O3 were studied. The formation of intermetallic nanoparticles was determined by X-ray diffraction analysis and confirmed by X-ray photoelectron spectroscopy and IR spectroscopy of adsorbed CO. In the hydrogenation of acetylene in excess ethylene, PdIn/Al2O3 had significantly higher selectivity of ethylene formation (~86%) than monometallic Pd/Al2O3 (~35%). The high selectivity of PdIn/Al2O3 is explained by two factors: (1) the formation of monatomic Pd1 sites isolated from one another by In atoms and (2) the change in the electronic state of Pd atoms in the intermetallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Furukawa, S. and Komatsu, T., ACS Catal., 2017, vol. 7, p. 735.

    Article  CAS  Google Scholar 

  2. Marakatti, V. S. and Peter, S. C., Prog. Solid State Chem., 2018, vol. 52, p. 1.

    Article  CAS  Google Scholar 

  3. Armbrüster, M., Schlögl, R., and Grin, Yu., Sci. Technol. Adv. Mater., 2014, vol. 15, p. 034 803.

    Article  Google Scholar 

  4. Dasgupta, A. and Rioux, R.M., Catal. Today, 2019, vol. 330, p. 2.

    Article  CAS  Google Scholar 

  5. Arkatova, L.A., Khim. Interesah Ustoich. Razvit., 2001, vol. 19, p. 7.

    Google Scholar 

  6. Armbrüster, M., Behrens, M., Cinquini, F., Föttinger, K., Grin, Yu., Haghofer, A., Klötzer, B., Knop-Gericke, A., Lorenz, H., Ota, A., Penner, S., Prinz, J., Rameshan, C., Révay, Z., and Rosenthal, D., et al., ChemCatChem., 2012, vol. 4, p. 1048.

    Article  CAS  Google Scholar 

  7. Armbrüster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Yu., and Schlögl, R., J. Am. Chem. Soc., 2010, vol. 132, p. 14745.

    Article  PubMed  CAS  Google Scholar 

  8. Kovnir, K., Armbrüster, M., Teschner, D., Venkov, T.V., Jentoft, F.C., Knop-Gericke, A., Grin, Yu., and Schlögl, R., Sci. Tech. Adv. Mater., 2007, vol. 8, p. 420.

    Article  CAS  Google Scholar 

  9. Osswald, J., Giedigkeit, R., Jentoft, R.E., Armbrüster, M., Girgsdies, F., Kovnir, K., Ressler, T., Grin, Yu., and Schlögl, R., J. Catal., 2008, vol. 258, p. 210.

    Article  CAS  Google Scholar 

  10. Osswald, J., Kovnir, K., Armbrüster, M., Giedigkeit, R., Jentoft, R.E., Wild, U., Grin, Yu., and Schlögl, R., J. Catal. 2008, vol. 258, p. 219.

    Article  CAS  Google Scholar 

  11. Wowsnick, G., Teschner, D., Kasatkin, I., Girgsdies, F., Armbrüster, M., Zhang, A., Grin, Yu., Schlögl, R., and Behrens, M., J. Catal., 2014, vol. 309, p. 209.

    Article  CAS  Google Scholar 

  12. Wowsnick, G., Teschner, D., Armbrüster, M., Kasatkin, I., Girgsdies, F., Grin, Yu., Schlögl, R., and Behrens, M., J. Catal., 2014, vol. 309, p. 221.

    Article  CAS  Google Scholar 

  13. Kovnir, K., Osswald, J., Armbruster, M., Giedigkeit, R., Ressler, T., Grin, Yu., and Schlögl, R., Stud. Surf. Sci. Catal., 2006, vol. 162, p. 481.

    Article  CAS  Google Scholar 

  14. Glyzdova, D.V., Smirnova, N.S., Leont’eva, N.N., Gerasimov, E.Yu., Prosvirin, I.P., Vershinin, V.I., Shlyapin, D.A., and Tsyrul’nikov, P.G., Kinet. Catal. 2017, vol. 58, p. 140.

    Article  CAS  Google Scholar 

  15. Afonasenko, T.N., Smirnova, N.S., Temerev, V.L., Leont’eva, N.N., Gulyaeva, T.I., and Tsyrul’nikov, P.G., Kinet. Catal. 2016, vol. 57, p. 490.

    Article  CAS  Google Scholar 

  16. Smirnova, N.S., Shlyapin, D.A., Mironenko, O.O., Anoshkina, E.A., Temerev, V.L., Shitova, N.B., Kochubey, D.I., and Tsyrul’nikov, P.G., J. Mol. Catal. A: Chem., 2012, vol. 358, p. 152.

    Article  CAS  Google Scholar 

  17. Smirnova, N.S., Shlyapin, D.A., Shitova, N.B., Kochubey, D.I., and Tsyrul’nikov, P.G., J. Mol. Catal. A: Chem., 2015, vol. 403, p. 10.

    Article  CAS  Google Scholar 

  18. Smirnova, N.S., Mironenko, O.O., Shlyapin, D.A., Tsyrul’nikov, P.G., and Kochubei, D.I., Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, p. 1151

    Article  CAS  Google Scholar 

  19. Smirnova, N.S., Shlyapin, D.A., Leont’eva, N.N., Trenikhin, M.V., Shitova, N.B., Tsyrul’nikov, P.G., and Kochubei, D.I., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, p. 1186.

    Article  CAS  Google Scholar 

  20. Furukawa, S., Takahashi, K., and Komatsu, T., Chem. Sci., 2016, vol. 7, p. 4476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krajčí, M. and Hafner, J., ChemCatChem., 2016, vol. 8, p. 34.

    Article  CAS  Google Scholar 

  22. Furukawa, S., Endo, M., and Komatsu, T., ACS Catal. 2014, vol. 4, p. 3533.

    Article  CAS  Google Scholar 

  23. Okamoto, H., ASM Int., 2000, vol. 828, p. 2000.

    Google Scholar 

  24. Wu, Z., Wegener, E.C., Tseng, H.-T., Gallagher, J.R., Harris, J.W., Diaz, R.A., Ren, Ya., Ribeiro, F.H., and Miller, J.T., Catal. Sci. Technol., 2016, vol. 6, p. 6965.

    Article  CAS  Google Scholar 

  25. Mashkovsky, I.S., Markov, P.V., Bragina, G.O., Baeva, G.N., Rassolov, A.V., Yakushev, I.A., Vargaftik, M.N., and Stakheev, A.Yu., Nanomaterials, 2018, vol. 8, p. 769.

    Article  PubMed Central  CAS  Google Scholar 

  26. Burueva, D.B., Kovtunov, K.V., Bukhtiyarov, A.V., Barskiy, D.A., Prosvirin, I.P., Mashkovsky, I.S., Baeva, G.N., Bukhtiyarov, V.I., Stakheev, A.Yu., and Koptyug, I.V., Chem. Eur. J., 2018, vol. 24, p. 2547.

    Article  CAS  PubMed  Google Scholar 

  27. Stakheev, A.Yu., Smirnova, N.S., Krivoruchenko, D.S., Baeva, G.N., Mashkovsky, I.S., Yakushev, I.A., and Vargaftik, M.N., Mendeleev Commun. 2017, vol. 27, p. 515.

    Article  CAS  Google Scholar 

  28. Bard, A.J., Parsons, R., and Jordan, J., Standard Potentials in Aqueous Solution, Boca Raton: CRC Press, 1985, p. 848.

    Google Scholar 

  29. Mashkovsky, I.S., Smirnova, N.S., Markov, P.V., Baeva, G.N., Bragina, G.O., Bukhtiyarov, A.V., Prosvirin, I.P., and Stakheev, A.Yu., Mendeleev Commun. 2018, vol. 28, p. 603.

    Article  CAS  Google Scholar 

  30. Stakheev, A.Yu., Highly organized nanostructured heterogeneous catalysts based on bimetallic and intermetallic nanoparticles for reactions of fine organic synthesis, Report on the RSF project 16-13-10530 in2018. http://rscf.ru/prjcard/?rid=16-13-10530

  31. Langford, J.I. and Wilson, A.J.C., J. Appl. Crystallogr., 1978, vol. 11, p. 102.

    Article  CAS  Google Scholar 

  32. Moulder, J., Stickle, W., Sobol, P., and Bomben, K., Handbook of X-ray Photoelectron Spectroscopy, Eden Priarie: Perkin-Elmer, 1992.

  33. Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, p. 129.

    Article  CAS  Google Scholar 

  34. Lear, T., Marshall, R., Lopez-Sanchez, J.A., Jackson, S.D., Klapotke, T.M., Baumer, M., Rupprechter, G., Freund, H.-J., and Lennon, D., J. Chem. Phys., 2005, vol. 123, p. 174706.

    Article  PubMed  CAS  Google Scholar 

  35. Hadjiivanov, K.I. and Vayssilov, G.N., Adv. Catal., 2002, vol. 47, p. 307.

    CAS  Google Scholar 

  36. Cao, Y., Sui, Z., Zhu, Y., Zhou, X., and Chen, D., ACS Catal., 2017, vol.7, p. 7835.

    Article  CAS  Google Scholar 

  37. Wencka, M., Hahne, M., Kocjan, A., Vrtnik, S., Kozelj, P., Korze, D., Jaglicic, Z., Soric, M., Popcevic, P., Ivkov, J., Smontara, A., Gille, P., Jurga, S., Tomes, P., and Paschen, S., et al., Intermetallics, 2014, vol.55, p. 56.

    Article  CAS  Google Scholar 

  38. Rameshan, C., Lorenz, H., Mayr, L., Penner, S., Zemlyanov, D., Arrigo, R., Haevecker, M., Blume, R., Knop-Gericke, A., Schlögl, R., and Klötzer, B., J. Catal., 2012, vol. 295, p. 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neumann, M., Teschner, D., Knop-Gericke, A., Reschetilowski, W., and Armbrüster, M., J. Catal., 2016, vol. 340, p. 49.

    Article  CAS  Google Scholar 

  40. Rameshan, C., Stadlmayr, W., Penner, S., Lorenz, H., Mayr, L., Hävecker, M., Blume, R., Rocha, T., Teschner, D., Knop-Gericke, A., Schlögl, R., Zemlyanov, D., Memmel, N., and Klötzer, B., J. Catal., 2012, vol. 290, p. 126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hillebrecht, F.U., Fuggle, J.C., Bennett, P.A., and Zołnierek, Z., Phys. Rev. B, 1983, vol. 27, p. 2179.

    Article  CAS  Google Scholar 

  42. Practical surface analysis by Auger and X-ray photoelectron spectroscopy, Briggs, D. and Seah, M.P., Eds., Chichester: Wiley, 1983.

    Google Scholar 

  43. McGuirk, G.M., Ledieu, J., Gaudry, É., de Weerd, M.-C., and Fournée, V., J. Chem. Phys., 2014, vol. 141, p. 084702.

    Article  CAS  PubMed  Google Scholar 

  44. Armbrüster, M., Wowsnick, G., Friedrich, M., Heggen, M., and Cardoso-Gil, R., J. Am. Chem. Soc., 2011, vol. 133, p. 9112.

    Article  PubMed  CAS  Google Scholar 

  45. Shao, L.D., Zhang, W., Armbrüster, M., Teschner, D., Girgsdies, F., Zhang, B.S., Timpe, O., Friedrich, M., Schlögl, R., and Su, D.S., Angew. Chem., 2011, vol. 50, p. 10231.

    Article  CAS  Google Scholar 

  46. Pei, G.X., Liu, X.Y., Wang, A., Lee, A.F., Isaacs, M.A., Li, L., Pan, X., Yang, X., Wang, X., Tai, Z., Wilson, K., and Zhang, T., ACS Catal., 2015, vol. 5, p. 3717.

    Article  CAS  Google Scholar 

  47. Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., and Nørskov, J.K., Science, 2008, vol. 320, p. 1320.

    Article  CAS  PubMed  Google Scholar 

  48. Meyer, R.J., Zhang, Q., Kryczka, A, Gomez, C., and Todorovic, R., ACS Catal., 2018, vol. 8, p. 566.

    Article  CAS  Google Scholar 

  49. Osswald, J., Active-site isolation for the selective hydrogenation of acetylene: the Pd-Ga and Pd–Sn intermetallic compounds, PhD Thesis, Berlin: Technical Univeristy Berlin, 2006, p. 163.

  50. Feng, Q., Zhao, S., Wang, Y., Dong, J., Chen, W., He, D., Wang, D., Yang, J., Zhu, Y., Zhu, H., Gu, L., Li, Z., Liu, Y., Yu, Rong., Li, J., and Li, Y., J. Am. Chem. Soc., 2017, vol. 139, p. 7294.

    Article  CAS  PubMed  Google Scholar 

  51. Mashkovskii, I.S., Tkachenko, O.P., Baeva, G.N., and Stakheev, A.Yu., Kinet. Catal. 2009, vol. 50, p. 768.

    Article  CAS  Google Scholar 

  52. Lamberov, A.A., Egorova, S.R., Il’yasov, I.R., Gil’manov, Kh.Kh., Trifonov, S.V., Shatilov, V.M., and Ziyatdinov, A.Sh., Kinet. Catal. 2007, vol. 48, p. 136.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.N. Vargaftik and I.A. Yakushev for providing us with the sample of the bimetallic complex used for catalyst preparation.

Funding

The XRD, XPS, and IR spectroscopy studies of the structure and morphology of the catalysts and their catalytic characteristics in gas-phase hydrogenation of acetylene were financially supported by the Russian Scientific Foundation (grant no. 19-13-00285). The procedure for the synthesis of the bimetallic PdIn/Al2O3 catalyst was developed with financial support of the Russian Scientific Foundation (grant no. 16-13-10530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Stakheev.

Additional information

Translated by L. Smolina

Abbreviations: Pd1 sites—palladium atoms isolated from one another by the atoms of the second metal (In); XRD—X-ray diffraction analysis; Ssp—specific surface area; IR-СО—IR spectroscopy of adsorbed СО; a. b.—absorption band; XPS—X-ray photoelectron spectroscopy; \({{X}_{{{{{\text{C}}}_{2}}{{{\text{H}}}_{2}}}}}\)—conversion of acetylene; \({{S}_{{{{{\text{C}}}_{2}}{{{\text{H}}}_{4}}}}}\)—selectivity of ethylene formation; T100%—temperature at which 100% conversion of C2H2 is achieved; S90%—selectivity of ethylene formation at 90% conversion of C2H2; BE—binding energy; Еа—activation energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, P.V., Bukhtiyarov, A.V., Mashkovsky, I.S. et al. PdIn/Al2O3 Intermetallic Catalyst: Structure and Catalytic Characteristics in Selective Hydrogenation of Acetylene. Kinet Catal 60, 842–850 (2019). https://doi.org/10.1134/S0023158419060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419060065

Keywords:

Navigation