Skip to main content

Kinetics Modeling of Fischer–Tropsch Synthesis on the Cobalt Catalyst Supported on Functionalized Carbon Nanotubes


An active cobalt catalyst supported on functionalized carbon nanotubes was prepared and tested for CO hydrogenation to produce liquid hydrocarbons in the Fischer–Tropsch synthesis. The catalyst characterization was carried out using different methods including X-ray diffraction, transmission electron microscopy and BET surface area equation. The kinetic experiments were performed in a fixed-bed reactor under following conditions: T =200–240°C, P = 15–30 bars, GHSV = 0.5–1.5 nL \({\text{g}}_{{{\text{cat}}}}^{{ - 1}}\) h–1 and H2/CO feed ratio (mol/mol) = 1–2.5. Based on various mechanisms and Langmuir–Hinshelwood–Hougen–Watson type rate equations, eleven kinetic expressions for CO consumption were tested and the best-fitted model is achieved. In kinetic rate development, various rate-determining steps (RDS) are considered for evaluation of RDS effects. The kinetic parameters were estimated with nonlinear regression method using Levenberg–Marquardt method to make refined optimization. The obtained energy of activation was 78 kJ/mol for optimal kinetic model. The obtained results show that the best models for proposed elementary reactions involve the formation of surface species as RDS rather than syngas adsorption.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Anderson, R.B., Kölbel, H., and Rálek, M., The Fischer–Tropsch Synthesis, Acad. Press, 1984,

    Google Scholar 

  2. 2

    Dry, M.E., Studies in Surface Science and Catalysis, André, S. and Mark, D., Eds., Elsevier, 2004, Ch. 7, p. 533.

    Google Scholar 

  3. 3

    Nakhaei Pour, A. and Dolati, F., Prog. React. Kinet. Mech., 2016, vol. 41, p. 371.

    Article  CAS  Google Scholar 

  4. 4

    Zhang, H., Lancelot, C., Chu, W., Hong, J., Khodakov, A.Y., Chernavskii, P.A., Zheng, J., and Tong, D., J. Mater. Chem., 2009, vol. 19, p, 9241.

  5. 5

    Xu, J. and Bartholomew, C.H., J. Phys. Chem. B, 2005, vol. 109, p. 2392.

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Nakhaei Pour, A., Housaindokht, M.R., and Monhemi, H., Prog. React. Kinet. Mech., 2016, vol. 41, p. 159.

    Article  CAS  Google Scholar 

  7. 7

    Nakhaei Pour, A. and Housaindokht, M.R., Prog. React. Kinet. Mech., 2014, vol. 39, p. 137.

    Article  CAS  Google Scholar 

  8. 8

    Nakhaei Pour, A., Karimi, J., Oliaei Torshizi, H., and Hashemeian, M., Prog. React. Kinet. Mech., 2017, vol. 42, p. 80.

    Article  Google Scholar 

  9. 9

    Dry, M.E., Shingles, T., and Boshoff, L.J., J. Catal., 1972, vol. 25, p. 99.

    Article  CAS  Google Scholar 

  10. 10

    Nakhaei Pour, A. and Modaresi, S.M., J. Nano Res., 2016, vol. 35, p. 39.

    Article  CAS  Google Scholar 

  11. 11

    Nakhaei Pour, A., Shahri, S.M.K., Bozorgzadeh, H.R., Zamani, Y., Tavasoli, A., and Marvast, M.A., Appl. Catal., A., 2008, vol. 348, p. 201.

  12. 12

    Shiroudi, A. and Deleuze, M.S., Prog. React. Kinet. Mech., 2016, vol. 41, p. 398.

    Article  CAS  Google Scholar 

  13. 13

    Eris, S. and Bashiri, H., Prog. React. Kinet. Mech., 2016, vol. 41, p. 109.

    Article  CAS  Google Scholar 

  14. 14

    Van Der Laan, G.P. and Beenackers, A.A.C.M., Catal. Rev.: Sci. Eng., 1999, vol. 41, p. 255.

    Article  CAS  Google Scholar 

  15. 15

    Teng, B.-T., Chang, J., Zhang, C.-H., Cao, D.-B., Yang, J., Liu, Y., Guo, X.-H., Xiang, H. W., and Li, Y.-W., Appl. Catal., A, 2006, vol. 301, p. 39

  16. 16

    Nakhaei Pour, A., Khodabandeh, H., Izadyar, M., and Housaindokht, M.R., Reac. Kinet. Mech. Cat., 2014, vol. 111, p. 29.

    Article  CAS  Google Scholar 

  17. 17

    Ralston, W.T., Melaet, G., Saephan, T., and Somorjai, G.A., Angew. Chem., 2017, vol. 56, p. 7415.

    Article  CAS  Google Scholar 

  18. 18

    Keyvanloo, K., Lanham, S.J., and Hecker, W.C., Catal. Today, 2016, vol. 270, p. 9.

    Article  CAS  Google Scholar 

  19. 19

    Muleja, A.A., Yao, Y., Glasser, D., and Hildebrandt, D., Appl. Catal., A, 2016, vol. 517, p. 217.

  20. 20

    Tavasoli, A., Nakhaei Pour, A., and Ahangari, M.G., J. Nat. Gas Chem., 2010, vol. 19, p. 653.

    Article  CAS  Google Scholar 

  21. 21

    Golestan, S., Mirzaei, A.A., and Atashi, H., Fuel, 2017, vol. 200, p. 407.

    Article  CAS  Google Scholar 

  22. 22

    Nakhaei Pour, A., Housaindokht, M.R., Irani, M., and Shahri, S.M.K., Fuel, 2014, vol. 116, p. 787.

    Article  CAS  Google Scholar 

  23. 23

    Rebmann, E., Fongarland, P., Lecocq, V., Diehl, F., and Schuurman, Y., Catal. Today, 2016, vol. 275, p. 20.

    Article  CAS  Google Scholar 

  24. 24

    Moazami, N., Wyszynski, M.L., Rahbar, K., Tsolakis, A., and Mahmoudi, H., Chem. Eng. Sci., 2017, vol. 171, p. 32.

    Article  CAS  Google Scholar 

  25. 25

    Wang, X., Yang, G., Zhang, J., Chen, S., Wu, Y., Zhang, Q., Wang, J., Han, Y., and Tan, Y., Chem. Commun., 2016, vol. 52, p. 7352

    Article  CAS  Google Scholar 

  26. 26

    Zhu, B., Du, T., and Sun, Y., Prog. React. Kinet. Mech., 2016, vol. 41, p. 14.

    Article  CAS  Google Scholar 

  27. 27

    Hatami, B., Tavasoli, A., Asgharia, A., Zamani, Y., and Zamaniyan, A., Prog. React. Kinet. Mech., 2017.

  28. 28

    Hatami, B., Asghari, A., and Tavasoli, A., Pet. Coal, 2016, vol. 58, p. 655.

    CAS  Google Scholar 

  29. 29

    Nakhaei Pour, A., Housaindokht, M.R., Zarkesh, J., and Tayyari, S.F., J. Ind. Eng. Chem., 2010, vol. 16, p. 1025.

    Article  CAS  Google Scholar 

  30. 30

    Nakhaei Pour, A., Khodabandeh, H., Izadyar, M., and Housaindokht, M.R., J. Nat. Gas Sci. Eng., 2013, vol. 15, p. 53.

    Article  CAS  Google Scholar 

  31. 31

    Zhao, Y., Wang, L., Hao, X., and Wu, J., Front. Chem. Eng. China, 2009, vol. 4, p. 153.

    Article  CAS  Google Scholar 

  32. 32

    Guo, S., Dong, S., and Wang, E., ACS Nano, 2009, vol. 4, p. 547.

    Article  CAS  Google Scholar 

  33. 33

    Xing, B., Yuan, R., Zhang, C., Huang, G., Guo, H., Chen, Z., Chen, L., Yi, G., Zhang, Y., and Yu, J., Fuel Process. Technol., 2017, vol. 165, p. 112.

    Article  CAS  Google Scholar 

  34. 34

    Trépanier, M., Tavasoli, A., Dalai, A.K., and Abatzoglou, N., Fuel Process. Technol., 2009, vol. 90, p. 367.

    Article  CAS  Google Scholar 

  35. 35

    Tavasoli, A., Trépanier, M., Dalai, A.K., and Abatzoglou, N., J. Chem. Eng. Data, 2010, vol. 55, p. 2757.

    Article  CAS  Google Scholar 

  36. 36

    Arsalanfar, M., Mirzaei, A., Atashi, H., Bozorgzadeh, H., Vahid, S., and Zare, A., Fuel Process. Technol., 2012, vol. 96, p. 150.

    Article  CAS  Google Scholar 

  37. 37

    Vahid, S. and Mirzaei, A., J. Ind. Eng. Chem., 2014, vol. 20, p. 2166.

    Article  CAS  Google Scholar 

  38. 38

    Nakhaei Pour, A., Housaindokht, M.R., Zarkesh, J., Irani, M., and Babakhani, E.G., J. Ind. Eng. Chem., 2012, vol. 18, p. 597.

    Article  CAS  Google Scholar 

  39. 39

    Nakhaei Pour, A. and Housaindokht, M.R., J. Ind. Eng. Chem., 2014, vol. 20, p. 591.

    Article  CAS  Google Scholar 

  40. 40

    Owen, R.E., Plucinski, P., Mattia, D., Torrente-Murciano, L., Ting, V.P., and Jones, M.D., J. CO 2 Util., 2016, vol. 16, p. 97.

  41. 41

    Nowicki, L., Ledakowicz, S., and Bukur, D., Chem. Eng. Sci., 2001, vol. 56, p. 1175.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Asghari.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatami, B., Tavasoli, A., Asghari, A. et al. Kinetics Modeling of Fischer–Tropsch Synthesis on the Cobalt Catalyst Supported on Functionalized Carbon Nanotubes. Kinet Catal 59, 701–709 (2018).

Download citation


  • Fischer–Tropsch synthesis
  • cobalt based catalyst
  • fixed-bed reactor
  • kinetic modeling