Supported MgO–V2O5/Al2O3 catalysts for oxidative propane dehydration: Effect of the molar Mg : V ratio on the phase composition and catalytic properties of samples

Abstract

The physicochemical properties of V2O5/Al2O3 and MgO–V2O5/Al2O3 supported catalysts (Mg : V = 1 : 1, 2 : 1, and 3 : 2) obtained by consecutive impregnation of the support with solutions of vanadium and magnesium precursors are studied using a complex of mutually complementary methods (XRD, Raman spectroscopy, UV–Vis spectrometry, and TPR-H2). The effect of the formation of surface magnesium vanadates of various composition and structure on the catalytic properties of the supported vanadium oxide catalysts in the oxidative dehydrogenation of propane is studied. The introduction of magnesium in the samples and an increase in its content, accompanied by a change in the structure of the surface vanadium oxide phases from polymeric VO6/VO5 species to surface metavanadate species, magnesium metavanadate, and further to magnesium divanadate, significantly affects their catalytic properties in the reaction of the oxidative dehydrogenation of propane to propylene.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Cavani, F., Ballarini, N., and Cericola, A., Catal. Today, 2007, vol. 127, p. 113.

    CAS  Article  Google Scholar 

  2. 2.

    Cavani, F. and Trifiro, F., Appl. Catal., A, 1995, vol. 133, p. 219.

    CAS  Article  Google Scholar 

  3. 3.

    Buyevskaya, O.V. and Baerns, M., Catalysis, 2002, vol. 16, p. 155.

    CAS  Article  Google Scholar 

  4. 4.

    Sattler, J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, p. 10613.

    CAS  Article  Google Scholar 

  5. 5.

    Mukherjee, D., Park, S.-E., and Reddy, B.M., J. CO2 Utilization, 2016, vol. 16, p. 301.

    CAS  Article  Google Scholar 

  6. 6.

    Carrero, C.A., Keturakis, C.J., Orrego, A., Schomäcker, R., and Wachs, I.E., Dalton Trans., 2013, vol. 42, p. 12644.

    CAS  Article  Google Scholar 

  7. 7.

    Carrero, C.A., Schloegl, R., Wachs, I.E., and Schomaecker, R., ACS Catal., 2014, vol. 4, p. 3357.

    CAS  Article  Google Scholar 

  8. 8.

    Mamedov, E.A. and Cortes-Corberan, V., Appl. Catal., A, 1995, vol. 127, p. 1.

    CAS  Article  Google Scholar 

  9. 9.

    Alexopoulos, K., Reyniers, M.F., and Marin, G.J., J. Catal., 2012, vol. 289, p. 127.

    CAS  Article  Google Scholar 

  10. 10.

    Rozanska, X., Fortrie, R., and Sauer, J., J. Phys. Chem. C, 2007, vol. 111, p. 6041.

    CAS  Article  Google Scholar 

  11. 11.

    Nguyen, N.H., Tran, T.H., Nguyen, M.T., and Le, M.C., Int. J. Quantum Chem., 2010, vol. 110, p. 2653.

    CAS  Article  Google Scholar 

  12. 12.

    Lio, Y., Feng, W., Li, T., He, H., Dai, W., Huang, W., Cao, Y., and Fan, K.-N., J. Catal., 2006, vol. 239, p. 125.

    Article  Google Scholar 

  13. 13.

    Chalupka, K., Thomas, C., Millot, Y., Averseng, F., and Dzwigaj, S., J. Catal., 2013, vol. 305, p. 46.

    CAS  Article  Google Scholar 

  14. 14.

    Kumar, A.S.H., Upendar, K., Qiao, A., Rao, P.S.N., Lingaiah, N., Kalevaru, V.N., Martin, A., Sailu, Ch., and Sai-Prasad, P.S., Catal. Commun., 2013, vol. 33, p. 76.

    CAS  Article  Google Scholar 

  15. 15.

    Reddy, B.M., Rao, K.N., Reddy, G.K., Khan, A., and Park, S.-E., J. Phys. Chem. C, 2007, vol. 111, p. 18751.

    CAS  Article  Google Scholar 

  16. 16.

    Klisińska, A., Samson, K., Gressel, I., and Grzybowska, B., Appl. Catal., A, 2006, vol. 309, p. 10.

    Article  Google Scholar 

  17. 17.

    Vislovskiy, V.P., Shamilov, N.Y., Sardarly, A.M., Bychkov, V.Yu., Sinev, M.Yu., Ruiz, P., and Valenzuela, R.X., Cortes corberan v, Chem. Eng. J., 2003, vol. 95, p. 37.

    CAS  Google Scholar 

  18. 18.

    Ayandiran, A., Bakare, I.A., Binous, H., Al-Ghamdi, S., Razzak, S., and Hossain, M.M., Catal. Sci. Technol., 2016, vol. 6, p. 5154.

    CAS  Article  Google Scholar 

  19. 19.

    Yang, S., Iglesia, E., and Bell, A.T., J. Phys. Chem. B, 2005, vol. 109, p. 8987.

    CAS  Article  Google Scholar 

  20. 20.

    Dai, H., Bell, A.T., and Iglesia, E., J. Catal., 2004, vol. 221, p. 491.

    CAS  Article  Google Scholar 

  21. 21.

    Carrero, C., Kauer, M., Dinse, A., Wolfram, T., Hamilton, N., Trunschke, A., Schlögl, R., and Schomäcker, R., Catal. Sci. Technol., 2014, vol. 4 P, p. 786.

    CAS  Article  Google Scholar 

  22. 22.

    Vidal-Michel, R. and Hochn, K.L., J. Catal., 2004, vol. 221, p. 127.

    CAS  Article  Google Scholar 

  23. 23.

    Hanuza, J., Jeż owska-Trzebiatowska, B., and Oganowski, W., J. Mol. Catal., 1985, vol. 29, p. 109.

    CAS  Article  Google Scholar 

  24. 24.

    Chang, W.S., Chen, Y.Z., and Yang, B.L., Appl. Catal., A, 1995, vol. 124, p. 221.

    CAS  Article  Google Scholar 

  25. 25.

    Pless, J.D., Bardin, B.B., Kim, H.-S., Ko, D., Smith, M.T., Hamond, R.R., Stair, P.C., and Poeppelmeier, K.R., J. Catal., 2004, vol. 223, p. 419.

    CAS  Article  Google Scholar 

  26. 26.

    Soenen, V., Herrmann, J.M., and Voltay, J.C., J. Catal., 1996, vol. 159, p. 410.

    CAS  Article  Google Scholar 

  27. 27.

    Dias, A.P.S., Dmitrov, L.D., and Oliveira, M.C.-R., Zavoianu, R., Fernandes, A., and Portela, M.F., J. Non-Cryst. Solids, 2010, vol. 356, p. 1488.

    Article  Google Scholar 

  28. 28.

    Lee, J.K., Hong, U.G., Yoo, Y., Cho, Y.-J., Lee, J., Chang, H., Song, I.K., and Nanosci, J., Nanotecnology, 2013, vol. 13, p. 8110.

    CAS  Google Scholar 

  29. 29.

    Ogonowski, J. and Skrzyńska, E., Catal. Lett., 2006, vol. 111, p. 79.

    CAS  Article  Google Scholar 

  30. 30.

    Machli, M., Heracleous, E., and Lemonidou, A.A., Appl. Catal., A, 2002, vol. 236, p. 23.

    CAS  Article  Google Scholar 

  31. 31.

    Machli, M. and Lemonidou, A.A., Catal. Lett., 2005, vol. 99, p. 221.

    CAS  Article  Google Scholar 

  32. 32.

    Kharlamova, T., Sushchenko, E., Izaak, T., and Vodyankina, O., Catal. Today, 2016, vol. 278, p. 174.

    CAS  Article  Google Scholar 

  33. 33.

    Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984.

    Google Scholar 

  34. 34.

    Berndt, H., Martin, A., Brü ckner, A., Schreier, E., Müller, D., Kosslick, H., Wolf, G.-U., and Lücke, B., J. Catal., 2000, vol. 191, p. 384.

    CAS  Article  Google Scholar 

  35. 35.

    Centi, G., Perathoner, S., Triifiro, F., Aboukais, A., Aissi, C.F., and Guelton, M., J. Phys. Chem., 1992, vol. 96, p. 2617.

    CAS  Article  Google Scholar 

  36. 36.

    Morey, M., Davidson, A., Eckert, H., and Stucky, G., Chem. Mater., 1996, vol. 8, p. 486.

    CAS  Article  Google Scholar 

  37. 37.

    Ng, H.N. and Calvo, C., Can. J. Chem., 1972, vol. 50, p. 3619.

    Article  Google Scholar 

  38. 38.

    Gao, X. and Wachs, I.E., J. Phys. Chem. B, 2000, vol. 104, p. 1261.

    CAS  Article  Google Scholar 

  39. 39.

    Liu, Y.-M., Feng, W.-L., Li, T.-C., He, H.-Y., Dai, W.-L., Huang, W., Cao, Y., and Fan, K.-N., J. Catal., 2006, vol. 239, p. 125.

    CAS  Article  Google Scholar 

  40. 40.

    Gao, X., Bare, S.R., Weckhuysen, B.M., and Wachs, I.E., J. Phys. Chem. B, 1998, vol. 102, p. 10842.

    CAS  Article  Google Scholar 

  41. 41.

    Wachs, I.E., Dalton Trans., 2013, vol. 42, p. 11762.

    CAS  Article  Google Scholar 

  42. 42.

    Deo, C. and Wachs, I.E., J. Phys. Chem., 1991, vol. 95, p. 5895.

    Article  Google Scholar 

  43. 43.

    Busca, G., Ricchiard, G., Sam, D.S.H., and Volta, J.-C., J. Chem. Soc., Faraday Trans., 1994, vol. 90, p. 1161.

    CAS  Article  Google Scholar 

  44. 44.

    Jin, M. and Chen, Z.-M., Catal. Lett., 2009, vol. 131, p. 266.

    CAS  Article  Google Scholar 

  45. 45.

    Sugiyama, S., Hashimoto, T., Shigemoto, N., and Hayashia, H., Catal. Lett., 2003, vol. 89, nos. 3–4, p. 229.

    CAS  Article  Google Scholar 

  46. 46.

    Kijima, N., Toba, M., and Yoshimura, Y., Catal. Lett., 2003, vol. 127, p. 63.

    Article  Google Scholar 

  47. 47.

    Sugiyama, S., Hirata, Y., Nakagawa, K., Sotowa, K.-I., Maehara, K., Himeno, Y., and Ninomiya, W., J. Catal., 2008, vol. 260, p. 157.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. S. Kharlamova.

Additional information

Original Russian Text © E.D. Sushchenko, T.S. Kharlamova, T.I. Izaak, O.V. Vodyankina, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 5, pp. 642–653.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sushchenko, E.D., Kharlamova, T.S., Izaak, T.I. et al. Supported MgO–V2O5/Al2O3 catalysts for oxidative propane dehydration: Effect of the molar Mg : V ratio on the phase composition and catalytic properties of samples. Kinet Catal 58, 630–641 (2017). https://doi.org/10.1134/S0023158417050202

Download citation

Keywords

  • oxidative dehydrogenation
  • supported vanadium oxide catalysts
  • modification with magnesium oxide
  • surface magnesium vanadates